Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Accelerated transgene expression of pDNA/polysaccharide complexes by solid-phase reverse transfection and analysis of the cell transfection mechanism

Abstract

Gene delivery using pDNA complexes immobilized on a substrate, termed solid-phase reverse transfection (RTF), has received increasing attention. This is because it can enhance transgene expression and localize gene delivery. However, gene carriers used in RTF are limited, and their transgene expression mechanisms are unclear. In this study, we employed pDNA/chitosan/anionic polysaccharide complexes for RTF and investigated their cell transfection mechanisms. The pDNA/chitosan/hyaluronic acid (HA) ternary complexes showed particularly higher transgene expression than other ternary complexes. Cellular uptake and intracellular trafficking pathways were analyzed using inhibitors of endocytosis and intracellular trafficking. It was revealed that pDNA/chitosan/HA complexes were taken up via macropinocytosis and released from late endosomes. Furthermore, pDNA complexes were remarkably accumulated in the nucleus in RTF compared with the conventional forward transfection (FTF) method. These results suggest that the cell transfection efficiency of the pDNA/chitosan/HA ternary complexes in RTF was enhanced by their efficient delivery to the nucleus via late endosomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sato T, Ishii T, Okahata Y. In vitro gene delivery mediated by chitosan. Effect of pH, serum, and molecular mass of chitosan on the transfection efficiency. Biomaterials. 2001;22:2075–80.

    Article  CAS  PubMed  Google Scholar 

  2. Ishii T, Okahata Y, Sato T. Mechanism of cell transfection with plasmid/chitosan complexes. Biochim Biophys Acta. 2001;1514:51–64.

    Article  CAS  PubMed  Google Scholar 

  3. Erbacher P, Zou S, Bettinger T, Steffan AM, Remy JS. Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability. Pharm Res. 1998;15:1332–9.

    Article  CAS  PubMed  Google Scholar 

  4. MacLaughlin FC, Mumper RJ, Wang J, Tagliaferri JM, Gill I, Hinchcliffe M, et al. Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. J Control Release. 1998;56:259–72.

    Article  CAS  PubMed  Google Scholar 

  5. Hagiwara K, Nakata M, Koyama Y, Sato T. The effects of coating pDNA/chitosan complexes with chondroitin sulfate on physicochemical characteristics and cell transfection. Biomaterials. 2012;33:7251–60.

    Article  CAS  PubMed  Google Scholar 

  6. Hagiwara K, Kishimoto S, Ishihara M, Koyama Y, Mazda O, Sato T. In vivo gene transfer using pDNA/chitosan/chondroitin sulfate ternary complexes: influence of chondroitin sulfate on the stability of freeze-dried complexes and transgene expression in vivo. J Gene Med 2013;15:83–92.

    Article  CAS  PubMed  Google Scholar 

  7. Sato T, Nakata M, Yang Z, Torizuka Y, Kishimoto S, Ishihara M. In vitro and in vivo gene delivery using chitosan/hyaluronic acid nanoparticles: influences of molecular mass of hyaluronic acid and lyophilization on transfection efficiency. J Gene Med 2017;19:1–10.

    Article  Google Scholar 

  8. Ziauddin J, Sabatini DM. Microarrays of cells expressing defined cDNAs. Nature. 2001;411:107–10.

    Article  CAS  PubMed  Google Scholar 

  9. Fujita S, Ota E, Sasaki C, Takano K, Miyake M, Miyake J. Highly efficient reverse transfection with siRNA in multiple wells of microtiter plates. J Biosci Bioeng 2007;104:329–33.

    Article  CAS  PubMed  Google Scholar 

  10. Segura T, Shea LD. Surface-tethered DNA complexes for enhanced gene delivery. Bioconjug Chem 2002;13:621–9.

    Article  CAS  PubMed  Google Scholar 

  11. Bielinska AU, Yen A, Wu HL, Zahos KM, Sun R, Weiner ND, et al. Application of membrane-based dendrimer/DNA complexes for solid phase transfection in vitro and in vivo. Biomaterials. 2000;21:877–87.

    Article  CAS  PubMed  Google Scholar 

  12. Honma K, Ochiya T, Nagahara S, Sano A, Yamamoto H, Hirai K, et al. Atelocollagen-based gene transfer in cells allows high-throughput screening of gene functions. Biochem Biophys Res Commun 2001;289:1075–81.

    Article  CAS  PubMed  Google Scholar 

  13. Fujita S, Onuki-Nagasaki R, Fukuda J, Enomoto J, Yamaguchi S, Miyake M. Development of super-dense transfected cell microarrays generated by piezoelectric inkjet printing. Lab Chip. 2013;13:77–80.

    Article  CAS  PubMed  Google Scholar 

  14. Castleberry S, Wang M, Hammond PT. Nanolayered siRNA dressing for sustained localized knockdown. ACS Nano. 2013;7:5251–61.

    Article  CAS  PubMed  Google Scholar 

  15. Hartmann H, Hossfeld S, Schlosshauer B, Mittnacht U, Pêgo AP, Dauner M, et al. Hyaluronic acid/chitosan multilayer coatings on neuronal implants for localized delivery of siRNA nanoplexes. J Control Release. 2013;168:289–97.

    Article  CAS  PubMed  Google Scholar 

  16. Yoshikawa T, Uchimura E, Kishi M, Funeriu DP, Miyake M, Miyake J. Transfection microarray of human mesenchymal stem cells and on-chip siRNA gene knockdown. J Control Release. 2004;96:227–32.

    Article  CAS  PubMed  Google Scholar 

  17. Bengali Z, C Rea J, Shea LD. Gene expression and internalization following vector adsorption to immobilized proteins: dependence on protein identity and density. J Gene Med 2007;9:668–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Uchimura E, Yamada S, Uebersax L, Yoshikawa T, Matsumoto K, Kishi M, et al. On-chip transfection of PC12 cells based on the rational understanding of the role of ECM molecules: efficient, non-viral transfection of PC12 cells using collagen IV. Neurosci Lett 2005;378:40–3.

    Article  CAS  PubMed  Google Scholar 

  19. Uchimura E, Yamada S, Nomura T, Matsumoto K, Fujita S, Miyake M, et al. Reverse transfection using antibodies against a cell surface antigen in mammalian adherent cell lines. J Biosci Bioeng 2007;104:152–5.

    Article  CAS  PubMed  Google Scholar 

  20. Bengali Z, Rea JC, Gibly RF, Shea LD. Efficacy of immobilized polyplexes and lipoplexes for substrate-mediated gene delivery. Biotechnol Bioeng 2009;102:1679–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Okabe H, Ishimoto T, Mima K, Nakagawa S, Hayashi H, Kuroki H, et al. CD44s signals the acquisition of the mesenchymal phenotype required for anchorage-independent cell survival in hepatocellular carcinoma. Br J Cancer. 2014;110:958–66.

    Article  CAS  PubMed  Google Scholar 

  22. Liu YC, Lu LF, Li CJ, Sun NK, Guo JY, Huang YH, et al. Hepatitis B Virus X protein induces RHAMM-dependent motility in hepatocellular carcinoma cells via PI3K-Akt-Oct-1 signaling. Mol Cancer Res 2020;18:375–89.

    Article  CAS  PubMed  Google Scholar 

  23. Araki N, Johnson M, Swanson J. A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. J Cell Biol. 1996;135:1249–60.

    Article  CAS  PubMed  Google Scholar 

  24. Parton RG, Richards AA. Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic. 2003;4:724–38.

    Article  CAS  PubMed  Google Scholar 

  25. Wang L, Rothberg K & Anderson R. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol. 1993;123:1107–17.

  26. Yoshimori T, Yamamoto A, Moriyama Y, Futai M, Tashiro Y. Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem 1991;266:17707–12.

    Article  CAS  PubMed  Google Scholar 

  27. Khalil I, Kogure K, Akita H, Harashima H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev 2006;58:32–45.

    Article  CAS  PubMed  Google Scholar 

  28. Bayer N, Schober D, Prchla E, Murphy RF, Blaas D, Fuchs R. Effect of bafilomycin A1 and nocodazole on endocytic transport in HeLa cells: implications for viral uncoating and infection. J Virol 1998;72:9645–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li D, Li P, Li G, Wang J, Wang E. The effect of nocodazole on the transfection efficiency of lipid-bilayer coated gold nanoparticles. Biomaterials. 2009;30:1382–8.

    Article  CAS  PubMed  Google Scholar 

  30. Liu Z, Jiao Y, Liu F, Zhang Z. Heparin/chitosan nanoparticle carriers prepared by polyelectrolyte complexation. J Biomed Mater Res Part A. 2007;83A:806–12.

    Article  CAS  Google Scholar 

  31. Lin YH, Chang CH, Wu YS, Hsu YM, Chiou SF, Chen YJ. Development of pH-responsive chitosan/heparin nanoparticles for stomach-specific anti-Helicobacter pylori therapy. Biomaterials. 2009;30:3332–42.

    Article  CAS  PubMed  Google Scholar 

  32. Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6:662–8.

    Article  CAS  PubMed  Google Scholar 

  33. Kurosaki T, Kitahara T, Kawakami S, Nishida K, Nakamura J, Teshima M, et al. The development of a gene vector electrostatically assembled with a polysaccharide capsule. Biomaterials. 2009;30:4427–34.

    Article  CAS  PubMed  Google Scholar 

  34. Yavin E, Yavin Z. Attachment and culture of dissociated cells from rat embryo cerebral hemispheres on poly lysine-coated surface. J Cell Biol. 1974;62:540–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Parker AL, Newman C, Briggs S, Seymour L, Sheridan PJ. Nonviral gene delivery: techniques and implications for molecular medicine. Expert Rev Mol Med 2003;5:1–15.

    Article  PubMed  Google Scholar 

  36. Batchelder EM, Yarar D. Differential requirements for clathrin-dependent endocytosis at sites of cell-substrate adhesion. Mol Biol Cell. 2010;21:3070–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bravo-Anaya LM, Fernández-Solís KG, Rosselgong J, Nano-Rodríguez JLE, Carvajal F, Rinaudo M. Chitosan-DNA polyelectrolyte complex: influence of chitosan characteristics and mechanism of complex formation. Int J Biol Macromol 2019;126:1037–49.

    Article  CAS  PubMed  Google Scholar 

  38. Peng SF, Tseng MT, Ho YC, Wei MC, Liao ZX, Sung HW. Mechanisms of cellular uptake and intracellular trafficking with chitosan/DNA/poly(γ-glutamic acid) complexes as a gene delivery vector. Biomaterials. 2011;32:239–48.

    Article  CAS  PubMed  Google Scholar 

  39. Hamilton SR, Fard SF, Paiwand FF, Tolg C, Veiseh M, Wang C, et al. The hyaluronan receptors CD44 and Rhamm (CD168) form complexes with ERK1,2 that sustain high basal motility in breast cancer cells. J Biol Chem 2007;282:16667–80.

    Article  CAS  PubMed  Google Scholar 

  40. Tolg C, Hamilton SR, Morningstar L, Zhang J, Zhang S, Esguerra KV, et al. RHAMM promotes interphase microtubule instability and mitotic spindle integrity through MEK1/ERK1/2 activity. J Biol Chem 2010;285:26461–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Greiner J, Li L, Ringhoffer M, Barth TFE, Giannopoulos K, Guillaume P, et al. Identification and characterization of epitopes of the receptor for hyaluronic acid-mediated motility (RHAMM/CD168) recognized by CD8+ T cells of HLA-A2-positive patients with acute myeloid leukemia. Blood. 2005;106:938–45.

    Article  CAS  PubMed  Google Scholar 

  42. Hashimoto M, Morimoto M, Saimoto H, Shigemasa Y, Sato T. Lactosylated chitosan for DNA delivery into hepatocytes: the effect of lactosylation on the physicochemical properties and intracellular trafficking of pDNA/chitosan complexes. Bioconjug Chem 2006;17:309–16.

    Article  CAS  PubMed  Google Scholar 

  43. Ito T, Iida-Tanaka N, Niidome T, Kawano T, Kubo K, Yoshikawa K, et al. Hyaluronic acid and its derivative as a multi-functional gene expression enhancer: protection from non-specific interactions, adhesion to targeted cells, and transcriptional activation. J Control Release. 2006;112:382–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Regional Innovation Creation R&D Programs of the Ministry of Economy, Trade, and Industry of Japan (20R3000). We would like to thank Editage (www.editage.jp) for English language editing of the manuscript submitted for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshinori Sato.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arai, T., Aiki, Y. & Sato, T. Accelerated transgene expression of pDNA/polysaccharide complexes by solid-phase reverse transfection and analysis of the cell transfection mechanism. Polym J 54, 603–613 (2022). https://doi.org/10.1038/s41428-021-00603-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00603-x

Search

Quick links