Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Synthetic DNA-compacting peptides derived from human sequence enhance cationic lipid-mediated gene transfer in vitro and in vivo

Abstract

Cationic lipids can deliver genes efficiently in vitro, but are generally inhibited by the presence of serum, and their efficiency in vivo is much lower than in vitro. An attractive strategy is to induce strong DNA compaction by its association with proteins, before addition of lipids. However the use of whole proteins might present both production and immunological limitations. We have devised a system in which DNA is associated with short peptides derived from human histone or protamine, before the addition of a cationic lipid or polymer. Peptides strongly associating with DNA confer to such peptide–DNA–lipid particles an enhanced in vitro transfection efficiency over that observed with classical DNA/lipid lipoplexes, and particularly confer the capacity to transfect in the presence of serum. This acquisition of serum resistance is cell type-independent, and observed with all four lipopolyamines tested and polyethylenimine. Precompacting DNA with a histone H1-derived peptide enhances cationic lipid RPR 115335-mediated gene transfer in an in vivo model of Lewis lung carcinoma. Apart from their use in peptide–DNA–lipid association, such peptides could be useful as part of chimeric gene delivery vectors presenting a DNA-binding moiety that can be easily associated with other functional domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Nabel EG et al. Recombinant gene expression in vivo within endothelial cells of the arterial wall Science 1989 244: 1342–1344

    Article  CAS  PubMed  Google Scholar 

  2. Nabel GJ et al. Direct gene transfer with DNA–liposome complexes in melanoma: expression, biologic activity and lack of toxicity in humans Proc Natl Acad Sci USA 1993 90: 11307–11311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schwartz B et al. Lipospermine-based gene transfer into the newborn mouse brain is optimized by a low lipospermine/DNA charge ratio Hum Gene Ther 1995 6: 1515–1524

    Article  CAS  PubMed  Google Scholar 

  4. Thierry AR et al. Systemic gene therapy: biodistribution and long-term expression of a transgene in mice Proc Natl Acad Sci USA 1995 92: 9742–9746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee ER et al. Detailed analysis of structures and formulations of cationic lipids for efficient gene transfer to the lung Hum Gene Ther 1996 7: 1701–1717

    Article  CAS  PubMed  Google Scholar 

  6. Wheeler C et al. A novel cationic lipid greatly enhances plasmid DNA delivery and expression in mouse lung Proc Natl Acad Sci USA 1996 93: 11454–11459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Egilmez N, Iwanuma Y, Bankert R . Evaluation and optimization of different cationic liposome formulations for in vivo gene transfer Biochem Biophys Res Commun 1996 221: 169–173

    Article  CAS  PubMed  Google Scholar 

  8. Stephan D et al. A new cationic liposome DNA complex enhances the efficiency of arterial gene transfer in vivo Hum Gene Ther 1996 7: 1803–1812

    Article  CAS  PubMed  Google Scholar 

  9. Hofland H et al. In vivo gene transfer by intravenous administration of stable cationic lipid DNA complex Pharm Res 1997 14: 742–749

    Article  CAS  PubMed  Google Scholar 

  10. Oudrhiri N et al. Gene transfer by guanidinium-cholesterol cationic lipids into airway epithelial cells in vitro and in vivo Proc Natl Acad Sci USA 1997 94: 1651–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lewis JG et al. A serum-resistant cytofectin for cellular delivery of antisense oligodeoxynucleotides and plasmid DNA Proc Natl Acad Sci USA 1996 93: 3176–3181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brunette E, Stribling R, Debs R . Lipofection does not require the removal of serum Nucleic Acids Res 1991 20: 1151

    Article  Google Scholar 

  13. Vitiello L et al. Condensation of plasmid DNA with polylysine improves liposome-mediated gene transfer into established and primary muscle cells Gene Therapy 1996 3: 396–404

    CAS  PubMed  Google Scholar 

  14. Zlatanova J, Yaneva J . Histone H1-DNA interactions and their relation to chromatin structure and function DNA Cell Biol 1991 10: 239–248

    Article  CAS  PubMed  Google Scholar 

  15. Garcia-Ramirez M, Subirana JA . Condensation of DNA by basic proteins does not depend on protein composition Biopolymers 1994 34: 285–292

    Article  CAS  Google Scholar 

  16. Kaneda Y, Iwai K, Uchita T . Increased expression of DNA cointroduced with nuclear protein in adult rat liver Science 1989 243: 375–378

    Article  CAS  PubMed  Google Scholar 

  17. Breeuwer M, Goldfarb D . Facilitated nuclear transport of histone H1 and other small nucleophilic proteins Cell 1990 60: 999–1008.

    Article  CAS  PubMed  Google Scholar 

  18. Cotten M et al. Transferrin-polycation-mediated introduction of DNA into human leukemic cells: stimulation by agents that affect the survival of transfected DNA or modulate transferrin receptor levels Proc Natl Acad Sci USA 1990 87: 4033–4037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wagner E et al. Transferrin–polycation conjugate as carrier for DNA uptake into cells Proc Natl Acad Sci USA 1990 87: 3410–3414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zenke M et al. Receptor-mediated endocytosis of transferrin–polycation conjugates: an efficient way to introduce DNA into hematopoietic cells Proc Natl Acad Sci USA 1990 87: 3655–3659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou X, Klibanov AL, Huang L . Lipophilic polylysine mediated efficient DNA transfection in mammalian cells Biochim Biophys Acta 1991 1065: 8–14

    Article  CAS  PubMed  Google Scholar 

  22. Wagner E et al. Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene transfer vehicle Proc Natl Acad Sci USA 1992 89: 7934–7938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Plank C et al. Gene transfer using asialoglycoprotein receptor-mediated endocytosis of DNA complexed with an artificial tetra-antennary galactose ligand Bioconj Chem 1992 3: 533–539

    Article  CAS  Google Scholar 

  24. Erbacher P et al. Gene transfer by DNA/glycosylated polylysine complexes into human blood monocyte-derived macrophages Hum Gene Ther 1996 7: 721–729

    Article  CAS  PubMed  Google Scholar 

  25. Batra RK et al. Receptor-mediated gene delivery employing lectin-binding specificity Gene Therapy 1994 1: 255–260

    CAS  PubMed  Google Scholar 

  26. Chen J et al. A novel gene delivery system using EGF receptor-mediated endocytosis FEBS Lett 1994 338: 167–169

    Article  CAS  PubMed  Google Scholar 

  27. Chen J, Stickles RJ, Daichendt KA . Galactosylated histone-mediated gene transfer and expression Hum Gene Ther 1994 5: 429–435

    Article  PubMed  Google Scholar 

  28. Hart SL et al. Gene delivery and expression mediated by an integrin-binding peptide Gene Therapy 1995 2: 552–554

    CAS  PubMed  Google Scholar 

  29. Chen S-Y et al. Design of a genetic immunotoxin to eliminate toxin immunogenicity Gene Therapy 1995 2: 116–126

    CAS  PubMed  Google Scholar 

  30. Coll J-L et al. In vitro targeting and specific transfection of human neuroblastoma cells by chCE7 antibody-mediated gene transfer Gene Therapy 1997 4: 156–161

    Article  CAS  PubMed  Google Scholar 

  31. Wu GY et al. Receptor-mediated gene delivery in vivo: partial correction of albuminemia in Nagase rats J Biol Chem 1991 266: 14338–14442

    CAS  PubMed  Google Scholar 

  32. Stankovics JC et al. Overexpression of human methylmalonyl CoA mutase in mice after in vivo gene transfer with asialoglycoprotein/polylysine/DNA complexes Hum Gene Ther 1994 5: 1095–1104

    Article  CAS  PubMed  Google Scholar 

  33. Behr JP . Gene transfer with synthetic cationic amphiphiles: prospects for gene therapy Bioconj Chem 1994 5: 382–389

    Article  CAS  Google Scholar 

  34. Zhou X, Huang L . DNA transfection mediated by cationic liposomes containing lipopolylysine: characterization and mechanism of action Biochim Biophys Acta 1994 1189: 195–203

    Article  CAS  PubMed  Google Scholar 

  35. Boussif O et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethyleneimine Proc Natl Acad Sci USA 1995 92: 7297–7301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Farhood H, Serbina N, Huang L . The role of phosphatidylethanolamine in cationic liposome-mediated gene transfer Biochim Biophys Acta 1995 1235: 289–295

    Article  PubMed  Google Scholar 

  37. Kamata H et al. Amphiphilic peptides enhance the efficiency of liposome-mediated transfection Nucleic Acids Res 1994 22: 536–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Trubetskoy VS et al. Cationic liposomes enhance targeted delivery and expression of exogenous DNA mediated by N-terminal modified poly(L-lysine)-antibody conjugate in mouse lung endothelial cells Biochim Biophys Acta 1992 1131: 311–313

    Article  CAS  PubMed  Google Scholar 

  39. Gershon H et al. Mode of formation and structural features of DNA-cationic liposome complexes used for transfection Biochemistry 1993 32: 7143–7151

    Article  CAS  PubMed  Google Scholar 

  40. Mack KD, Walzem R, Zeldis JB . Cationic lipid enhances in vitro receptor-mediated transfection Am J Med Sci 1994 307: 138–143

    Article  CAS  PubMed  Google Scholar 

  41. Fritz JD et al. Gene transfer into mammalian cells using histone-condensed plasmid DNA Hum Gene Ther 1996 7: 1395–1404

    Article  CAS  PubMed  Google Scholar 

  42. Gao X, Huang L . Potentiation of cationic liposome-mediated gene delivery by polyanions Biochemistry 1996 35: 1027–1036

    Article  CAS  PubMed  Google Scholar 

  43. Mack KD et al. Polylysine enhances cationic liposome-mediated transfection of the hepatoblastoma cell line Hep G2 Biotechnol Appl Biochem 1996 23: 217–220

    CAS  PubMed  Google Scholar 

  44. Li S, Huang L . In vivo gene transfer via intravenous administration of cationic lipid-protamine-DNA (LPD) complexes Gene Therapy 1997 4: 891–900

    Article  CAS  PubMed  Google Scholar 

  45. Gottschalk S et al. A novel DNA-peptide complex for efficient gene transfer and expression in mammalian cells Gene Therapy 1996 3: 448–457

    CAS  PubMed  Google Scholar 

  46. Plank C et al. Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery Hum Gene Ther 1996 7: 1437–1446

    Article  CAS  PubMed  Google Scholar 

  47. Erard M, Lakhdar-Ghazal F, Amalric F . Repeat motifs which contain β-turns and modulate DNA condensation Eur J Biochem 1990 191: 19–26

    Article  CAS  PubMed  Google Scholar 

  48. Byk G et al. Novel nonviral vectors for gene delivery: synthesis and applications Lett Peptide Sci 1997 4: 263–267

    CAS  Google Scholar 

  49. Byk G et al. Synthesis, activity, and structure–activity relationship studies of novel cationic lipids for DNA transfer J Med Chem 1998 41: 229–235

    Article  CAS  PubMed  Google Scholar 

  50. Delouis C et al. Xenotropic and amphotropic pseudotyped recombinant retrovirus to transfer genes into cells from various species Biochem Biophys Res Commun 1990 169: 8–14

    Article  CAS  PubMed  Google Scholar 

  51. Barthel F et al. Gene transfer optimisation with lipospermine-coated DNA DNA Cell Biol 1993 12: 553–560

    Article  CAS  PubMed  Google Scholar 

  52. Takeuchi K et al. Effect of zeta potential of cationic liposomes containing cholesterol derivatives on gene transfection FEBS Lett 1996 397: 207–209

    Article  CAS  PubMed  Google Scholar 

  53. Escriou V et al. Cationic lipid-mediated gene transfer: effect of serum on cellular uptake and intracellular fate of lipopolyamine/DNA complexes Biochim Biophys Acta 1998 1368: 276–288

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, B., Ivanov, MA., Pitard, B. et al. Synthetic DNA-compacting peptides derived from human sequence enhance cationic lipid-mediated gene transfer in vitro and in vivo. Gene Ther 6, 282–292 (1999). https://doi.org/10.1038/sj.gt.3300795

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300795

Keywords

This article is cited by

Search

Quick links