Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

α1Adrenoceptor subtypes linked to different mechanisms for increasing intracellular Ca2+ in smooth muscle

Abstract

Receptor-mediated increases in intracellular Ca2+ levels can be caused by release from intracellular organelles and/or influx from the extracellular fluid. Noradrenaline (NA) released from sympathetic nerves acts on α1-adrenoceptors to increase cytosolic Ca2+ and promote smooth muscle contraction1. In many cells activation of α1-adrenoceptors causes formation of inositol 1,4,5-trisphosphate which promotes Ca2+ release from intracellular stores2,3. The mechanism by which receptor activation opens cell surface Ca2+ channels is not known, although in some cases it may be secondary to formation of inositol phosphates4,5 or release of stored intracellular Ca2+ (ref. 3). However α1-adrenoceptors have recently been shown to have different pharmacological properties in different tissues6–9, and it has been proposed that different α1-adrenoceptor subtypes may control mobilization of intracellular Ca2+ and gating of extracellular Ca2+ influx7,9,10–12. We here report evidence for two subtypes of α1-adrenoceptors which cause contractile responses through different molecular mechanisms. One subtype stimulates inositol phosphate (InsP) formation and causes contractions which are independent of extracellular Ca2+, and the other does not stimulate inositol phosphate formation and causes contractions which require the influx of extracellular Ca2+ through dihydropyridine-sensitive channels. These results suggest that neurotransmitters and hormones may control Ca2+ release from intracellular stores and influx through voltage-gated membrane channels through distinct receptor subtypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cauvin, C., Loutzenhiser, R. & van Breeman, C. V. A. Rev. Pharmac. Toxicol. 23, 373–396 (1983).

    Article  CAS  Google Scholar 

  2. Berridge, M. J. & Irvine, R. F. Nature 312, 315–321 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Putney, J. W. Am. J. Physiol. 252, G149–G157 (1987).

    CAS  PubMed  Google Scholar 

  4. Irvine, R. F. and Moore, R. M. Biochem. J. 240, 917–920 (1986).

    Article  CAS  Google Scholar 

  5. Kuno, M. & Gardner, P. Nature 326, 301–304 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Coates, J., Jahn, U. & Weetman, D. F. Br. J. Pharmac. 75, 549–552 (1982).

    Article  CAS  Google Scholar 

  7. McGrath, J. C. Br. J. Pharmac 79, 227P (1983).

    Google Scholar 

  8. Morrow, A. L. & Creese, I. Molec. Pharmac. 29, 321–330 (1986).

    CAS  Google Scholar 

  9. Hieble, J. P., DeMarinis, R. M. & Matthews, W. D. Life Sci. 38, 1339–1350 (1986).

    Article  CAS  Google Scholar 

  10. Beckeringh, J. J. et al. J. Pharmac. exp. Ther. 229, 515–521 (1984).

    CAS  Google Scholar 

  11. Matthews, W. D. et al. J. Pharmacol. exp. Ther. 232, 330–336 (1985).

    CAS  PubMed  Google Scholar 

  12. Jim, K. F., Macia, R. A. & Matthews, W. D. J. Pharmac. exp. Ther. 237, 377–381 (1985).

    Google Scholar 

  13. Johnson, R. D. & Minneman, K. P. Molec. Pharmac. 31, 239–246 (1987).

    CAS  Google Scholar 

  14. LeClerc, B., Rouot, B., Schwartz, J., Velly, J. & Wemuth, C. G. Br. J. Pharmac. 71, 5–9 (1980).

    Article  CAS  Google Scholar 

  15. Engel, G. & Hoyer, D. Eur. J. Pharmac. 73, 221–224 (1981).

    Article  CAS  Google Scholar 

  16. Han, C., Abel, P. W. & Minneman, K. P. Molec. Pharmac. (in the press).

  17. Minneman, K. P. & Abel, P. W. Molec Pharmac. 25, 56–63 (1984).

    CAS  Google Scholar 

  18. Munson, P. J. & Rodbard, D. Analyt. Biochem. 107, 220–239 (1980).

    Article  CAS  Google Scholar 

  19. Cheng, Y.-C. & Prusoff, W. H. Biochem. Pharmac. 22, 2099–3108 (1973).

    Google Scholar 

  20. Prpic, V., Green, K. C., Blackmore, P. F. & Exton, J. H. J. biol. Chem. 259, 1382–1385 (1984).

    CAS  Google Scholar 

  21. Minneman, K. P., Fox, A. W. & Abel, P. W. Molec. Pharmac. 23, 359–368 (1983).

    CAS  Google Scholar 

  22. Amhed, M. I. & Naylor, I. L. Br. J. Pharmac. 77, 538P (1982).

    Google Scholar 

  23. Fox, A. W., Abel, P. W. & Minneman, K. P. Eur. J. Pharmac. 116, 145–152 (1985).

    Article  CAS  Google Scholar 

  24. Arunlakshana, O. & Schild, H. O. Br. J. Pharmac 14, 48–58 (1959).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, C., Abel, P. & Minneman, K. α1Adrenoceptor subtypes linked to different mechanisms for increasing intracellular Ca2+ in smooth muscle. Nature 329, 333–335 (1987). https://doi.org/10.1038/329333a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/329333a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing