Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reproductive and genetic consequences of founding isolated lion populations


Species survival is critically dependent on reproductive performance, a complex physiological process under rigorous genetic control. Classical studies of inbreeding in laboratory animals and livestock have shown that increased homozygosity can adversely affect spermatogenesis, ovulation and perinatal mortality and morbidity1–3. For wild populations, the consequences of inbreeding depression have not been examined intensively, although our recent studies of the African cheetah revealed a striking degree of genetic uniformity4,5 combined with an extremely high incidence of structurally abnormal spermatozoa (>70%) in captive6 as well as free-ranging7 males. In this study, we report definitive evidence that the reproductive function of free-ranging mammals can be impaired as a result of demographic contraction followed by inbreeding. In an examination of three distinct lion populations (two from the Serengeti ecosystem in East Africa and a third descended from lions in the Gir Forest of western India), a direct correlation was observed between genetic variability and two physiological traits, incidence of abnormal sperm and circulating testosterone, a critical hormone for spermatogenesis.


  1. 1

    Rice, V. A., Andrews, F. N., Warwick, E. J. & Legates, J. E. Breeding and Improvement of Farm Animals, 188–190 (McGraw-Hill, New York, 1967).

    Google Scholar 

  2. 2

    Johannsson, I. & Rendel, J. Genetics and Animal Breeding, 257–377 (Oliver and Boyd, Edinburgh, 1968).

    Google Scholar 

  3. 3

    Wyrobek, A. J. Genetics 92, 105–119 (1979).

    CAS  Google Scholar 

  4. 4

    O'Brien, S. J., Wildt, D. E., Goldman, D., Merril, C. R. & Bush, M. Science 221, 459–462 (1983).

    ADS  CAS  Article  Google Scholar 

  5. 5

    O'Brien, S. J., Wildt, D. E. & Bush, M. Scient. Am. 254, 84–92 (1986).

    Article  Google Scholar 

  6. 6

    Wildt, D. E. et al. Biol. Reprod. 29, 1019–1025 (1983).

    CAS  Article  Google Scholar 

  7. 7

    Wildt, D. E. et al. Biol. Reprod. 36, 351–360 (1987).

    CAS  Article  Google Scholar 

  8. 8

    Myers, N. Int. Wildlife 5, 4–11 (1975).

    Google Scholar 

  9. 9

    Schaller, G. B. The Serengeti Lion: a Study of Predator-Prey Relations (University of Chicago Press, 1972).

    Google Scholar 

  10. 10

    Bertram, B. J. Zool. 177, 463–482 (1975).

    Article  Google Scholar 

  11. 11

    Hanby, J. D. & Bygott, J. B. in Serengeti: Dynamics of an Ecosystem (eds Sinclair, A. R. E. & Norton-Griffiths, M.) 249–262 (University of Chicago Press, 1979).

    Google Scholar 

  12. 12

    Packer, C. in Ecological Aspects of Social Evolution (eds Rubenstein, D. & Wrangham, F.) 429–451 (Princeton Press, Princeton, 1986).

    Google Scholar 

  13. 13

    Pusey, A. & Packer, C. Behaviour (in the press).

  14. 14

    Joslin, P. in The World's Cats Vol. 1: Ecology and Conservation (ed. Eaton, R. L.) 127–141 (World Wildlife Safari, Winston, Oregon, 1971).

    Google Scholar 

  15. 15

    Joslin, P. J. Bombay nat. Hist. Soc. 81, 648–664 (1984).

    Google Scholar 

  16. 16

    Fosbrooke, H. E. Afr. Wildlife J. 1, 124–126 (1963).

    Article  Google Scholar 

  17. 17

    Caldwell, K. J. Soc. Preserv. Faun. Emp. 34, 62–65 (1938).

    Google Scholar 

  18. 18

    O'Brien, S. J. et al. Natn. Geogr. Res. 3, 114–124 (1987).

    Google Scholar 

  19. 19

    Ott, R. S. in Current Therapy in Theriogenology (ed. Morrow, D. A.) 125–126 (Saunders, Philadelphia, 1986).

    Google Scholar 

  20. 20

    Wildt, D. E. in Wild Mammals in Captivity (ed. Lumpkin, S.) (Sinauer, Sunderland, Massachusetts, in the press).

  21. 21

    Lincoln, G. A. in The Testis (eds Burger, H. & de Kretser, D.) 255–302 (Raven, New York, 1981).

    Google Scholar 

  22. 22

    Amann, R. P. in Current Therapy in Theriogenology (ed. Morrow, D. A.) 532–538 (Saunders, Philadelphia, 1986).

    Google Scholar 

  23. 23

    Bardin, C. W. & Paulsen, C. A. in Textbook of Endocrinology (ed. Williams, R. H.) 293–354 (Saunders, Philadelphia, 1981).

    Google Scholar 

  24. 24

    Sharpe, R. M. Biol. Reprod. 30, 29–49 (1984).

    CAS  Article  Google Scholar 

  25. 25

    Wildt, D. E., Howard, J. G., Hall, L. L. & Bush, M. Biol. Reprod. 34, 937–947 (1986).

    CAS  Article  Google Scholar 

  26. 26

    O'Brien, S. J. et al. Science 227, 1428–1434 (1985).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Wildt, D. E., Chakraborty, P. K., Meltzer, D. & Bush, M. Biol. Reprod. 30, 665–672 (1984).

    CAS  Article  Google Scholar 

  28. 28

    Wildt, D. E., Howard, J. G., Chakraborty, P. K. & Bush, M. Biol. Reprod. 34, 949–959 (1986).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wildt, D., Bush, M., Goodrowe, K. et al. Reproductive and genetic consequences of founding isolated lion populations. Nature 329, 328–331 (1987).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing