Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rhizobium nodulation gene nodD as a determinant of host specificity

Abstract

The symbiosis between bacteria of the genus Rhizobium and their leguminous host plants results in the formation of root nodules in a species-specific way, in that a particular bacterial species can nodulate only a limited number of host species. In fast-growing Rhizobium species many nodulation (nod) genes, including the functional interchangeable or common nod genes nodA,B,C,I,J and nodD and the host-specificity genes nodE.F, are localized on large Sym (for symbiosis) plasmids1–5. On the Rhizobium meliloti Sym plasmid three nodD genes have been localized. Two of these, nodD1 and nodD2, are required for efficient nodulation of the host plant (ref 6 and M. Honma, personal communication). Exudates of leguminous plants induce the expression of several Sym-plasmid-localized nod operons7–10, a process in which the constitutively expressed nodD product is supposed to act as a positive regulator8,9. The inducing compounds found in these exudates have been identified as flavones, flavanones or closely related compounds11–14. We report here that the nodD products of the various fast-growing Rhizobium species differ from each other in that they confer different responsiveness, in a species-specific way, to different sets of flavonoids and exudates. Moreover, in one case, the nodD gene was shown to be a determinant of host-specific nodulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. 1. Kondorosi, E. & Kondorosi, A. Trends biochem. Sci. 11, 296–299 (1986). 2. Shearman, C. A., Rossen, L., Johnston, A. W. B. & Downie, J. A. EMBOJ. 5,647–652 (1986). 3. Evans, I. J. & Downie, J. A. Gene 43, 95–101 (1986). 4. Djordjevic, M. C., Innes, R. W., Wijffelman, C. A., Schofield, P. R. & Rolfe, B. G. PI. Molec. Biol. 6, 389–401 (1986). 5. Spaink, H. P., Okker, R. J. H., Wijffelman, C. A., Pees, E. & Lugtenberg, B. J. J. in Recognition in Microbe–Plant Symbiotic and Pathogenic Interactions (ed. Lugtenberg, B. J. J.) 55–68 (Springer, Heidelberg, 1986). 6. Gottfert, M. et al J. molec. Biol. 191, 411–420 (1986). 7. Innes, R. W. et al. Molec. gen. Genet. 201, 426–432 (1985). 8. Mulligan, J. T. & Long, S. R. Proc. natn. Acad. Sci. U.S.A. 82, 6609–6613 (1985). 9. Rossen, L., Shearman, C. A., Johnston, A. W. B. & Downie, J. A. EMBO J. 4, 3369–3373 (1985). 10. Van Brussel, A. A. N. et al. J. Bact. 165, 517–522 (1986). 11. Peters, N. K., Frost, J. & Long, S. Science 233, 977–980 (1986). 12. Redmond, J. W. et al. Nature 323, 632–635 (1986). 13. Firmin, J. L., Wilson, K. E., Rossen, L. & Johnston, A. W. B. Nature 324, 90–94 (1986). 14. Zaat, S. A. J. et al J. Bact. 169, 198–204 (1987). 15. Rossen, L., Johnston, A. W. B. & Downie, J; A. Nucleic Acids Res. 12, 9497–9508, (1984). 16. Egelhoff, T. T., Fisher, R. F., Jacobs, T. W., Mulligan, J. T. & Long, S. R. DNA 4, 241–248 (1985). 17. Schofield, P. R. & Watson, J. M. Nucleic Acids Res. 14, 2891–2903 (1986). 18. Jacobs, T. W., Egelhoff, T. T. & Long, S. R. /. Bact. 162, 469–476 (1985). 19. Spaink, H. P., Okker, R. J. H., Wijffelman, C. A., Pees, E. & Lugtenberg, B. PI. motec. Biol. (in the press). 20. Djordjevic, M. A. et al. PI. molec. Biol. 4, 147–160 (1985). 21. Wijffelman, C. A., Pees, E., Van Brussel, A. A. N., Okker, R. J. H. & Lugtenberg, B. J. J. Arch. Microbiol. 143, 225–232 (1985). 22. Fisher, R. F., Tu, J. K. & Long, S. R. Appl. env. Microbiol. 49, 1432–1435 (1985). 23. Hooykaas, P. J. J., Snijdewint, F. G. M. & Schilperoort, R. A. Plasmid 8, 73–82 (1982). 24. Rostas, K., Kondorosi, E., Horvath, B., Simoncsits, A. & Kondorosi, A. Proc. natn. Acad. Sci. U.S.A. 83, 1757–1761 (1986). 25. Johnston, A. W. B. et al. Nature 276, 635–636 (1978). 26. Winarno, R. & Lie, T. A. Plant. Soil 51, 135–142 (1979). 27. Miller, J. H. Experiments in Molecular Genetics (Cold Spring Harbor Laboratory, New York, 1972). 28. Djordjevic, M. A., Schofield, P. R. & Rolfe, B. G. Molec. gen. Genet. 200, 463–471 (1985). 29. Van Brussel, A. A. N., Tak, T., Wetselaar, A., Pees, E. & Wijffelman, C. A. PL Sci. Lett. 27, 317–325 (1982). 30. Long, S. R, Buikema, W. J. & Ausubel, R. M. Nature 298, 485–488 (1982). 31. Debelle, F. & Sharma, S. B. Nucleic. Acids Res. 14, 7453–7472 (1986).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spaink, H., Wijffelman, C., Pees, E. et al. Rhizobium nodulation gene nodD as a determinant of host specificity. Nature 328, 337–340 (1987). https://doi.org/10.1038/328337a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/328337a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing