Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for neuromelanin involvement in MPTP-induced neurotoxicity

Abstract

Exposuretol-methyl-4-phenyl-l,293,6-tetrahydropyridine(MPTP) reproduces certain clinical, pathological, and neurochemical features of Parkinson's disease1,7. MPTP is metabolized by monoamine oxidase Type B to l-methyl-4-phenylpyridine (MPP+)8, which is selectively accumulated by high-affinity uptake mechanisms into dopaminergic neurons9. Lyden et al.10 described low-affinity binding of MPTP to synthetic and retinal melanin. We showed that MPP+ binds to neuromelanin with high affinity11,12, suggesting that in MPTP neurotoxicity, MPP+ enters nigral neurons by the dopamine uptake system and binds to neuromelanin, which serves as a depot, continuously releasing MPP+ until it destroys the cells11. This model predicts that agents which compete with MPP+ binding to neuromelanin should partially protect the dopamine neurons from MPTP-induced toxicity. The most potent identified competitor for MPP+ binding to melanin is the antimalarial drug chloroquine12, which has a high affinity for melanins13. In the present study, chloroquine, administered to monkeys in conventional anti-malarial doses before MPTP, protects them from MPTP-induced parkinsonian motor abnormalities, dopamine depletion in the striatum, and neuropathological changes in the substantia nigra.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. 1. Davis, G. C. et al. Psychiat. Res. 1, 249–254 (1979). 2. Langston, J. W., Ballard, P., Tetrud, J. W. & Irwin, I. Science 219, 979–980 (1983). 3. Burns, R. S. et al. Proc. natn. Acad. Sci. U.S.A. 80, 4546–4550 (1983). 4. Langston, J. W., Forno, L. S., Rebert, C. S. & Irwin, I. Brain Res. 292, 390–394 (1983). 5. Heikkila, R. E., Hess, A. & Duvoisin, R. C. Science 224, 1451–1453 (1984). 6. Hallman, H., Lange, J., Olson, L., Strombert, I. & Jonsson, G. /. Neurochem. 44, 117–127 (1985). 7. Kitt, C. A., Cork, L. C., Eidelberg, E., Job, T. H. & Price, D. L. Neuroscience 17,1089–1103 (1986). 8. Chiba, K., Trevor, A. & Castagnoli, N. Jr Biochem. biophys. Res. Commun. 120, 574–578 (1984). 9. Javitch, J. A., D'Amato, R. J., Strittmatter, S. M. & Snyder, S. H. Proc. natn. Acad. Sci. U.S.A. 82, 2173–2177 (1985). 10. Lyden, A., Bondesson, V., Larsson, B. S. & Lindquist, N. G. Acta Pharmac. Tox. 53,429–432 (1983). 11. D'Amato, R. J., Lipman, Z. P. & Snyder, S. H. Science 231, 987–989 (1986). 12. D'Amato, R. J., Benham, D. & Snyder, S. H. / Neurochem. 48, 653–658 (1987). 13.' Larson, B. & Tjalve, H. Biochem. Pharmac. 28, 1181 (1979). 14. Schwartzman, R. & Alexander, G. Brain Res. 358, 137–143 (1985). 15. Grundman, M., Mikulikova, I. & Urublousky, P. Archs int. Pharmacodyn. 197,45–52 (1972). 16. McChesney, E. W., Shekosky, J. M. & Hernandez, P. H. Biochem. Pharmac. 16, 2444–2447 (1967). 17. Heikkila, R. E., Manzino, L., Cabbat, F. S. & Duvoisin, R. C. Nature 311, 467–469 (1984). 18. Fuller, R. W. & Hemrock–Leucke, S. K. Life Sci. 37, 1089–1096 (1985). 19. Langston, J. W., Irwin, I., Langston, E. B. & Forno, L. S. Science 225, 1480–1482 (1984). 20. DeDuve, C. et al. Biochem. Pharmac. 23, 2495–2530 (1974). 21. Lawwill, T., Appleton, B. & Altstatt, L. Am. J. Ophthal. 65, 530–532 (1968). 22. Lyden, A., Bondesson, V., Larsson, B. S., Lindquist, N. G. & Olsson, L. I. Acta Pharmac. Tox. 57, 130–135 (1985). 23. Nicklas, W. J., Vyas, I. & Heikkila, R. E. Life Sci. 36, 2503–2508 (1985). 24. Bergqvist, Y. & Frisk–Holmberg, M. /. Chromat. 221, 119–127 (1980). 25. Nagatsu, T., Levitt, M. & Udenfriend, S. Analyt. Biochem. 9, 122–126 (1964). 26. Levine, R., Pollard, H. & Kuhn, D. Analyt. Biochem. 143, 205–208 (1984). 27. Coyle, J. Biochem. Pharmac. 21, 1935–1944 (1972).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

D'Amato, R., Alexander, G., Schwartzman, R. et al. Evidence for neuromelanin involvement in MPTP-induced neurotoxicity. Nature 327, 324–326 (1987). https://doi.org/10.1038/327324a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/327324a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing