Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence that the recently discovered θ1-globin gene is functional in higher primates

Abstract

A new subfamily of the α-globin-like family has recently been identified in higher primates1–3, rabbit4, galago5 and possibly the horse6. One member of this subfamily, θ1, is downstream from the adult α1-globin gene. In orang-utan, but not in rabbit4 or galago5, the θ1-gene appears to be structurally intact, suggesting that it may be functional in this species2. The orang-utan θ1-gene possesses initiation and termination codons, and the predicted polypeptide differs from the orang-utan α1-globin by 55 amino acids. The upstream promoter boxes CCAAT and ATA are present, although approximately 150 base pairs (bp) farther upstream than in the α1-gene. This structural difference in the promoter between the orang-utan θ1- and α1-genes has led Proudfoot7 to speculate that the θ1-gene may be inactive. We have now cloned the θ1-and α1-globin genes from the olive baboon, and have compared their sequences with those of orang-utan. The unique promoter structure of the orang-utan θ1-gene is highly conserved in baboon, although the orang-utan and baboon diverged nearly 30 million years ago. The coding sequences of the two θ1-genes differ by only 6.3% with 22 out of 27 nucleotide substitutions being codon third position silent changes. These data support the view that the θ1-gene has been functional in the baboon, orang-utan, and by implication, in man. We also estimate that the duplication event generating the θ1- and α-globin-like subfamilies may have occurred as much as 260 million years ago.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Marks, J., Shaw, J. P. & Shen, C.-K. J. Proc. natn. Acad. Sci. U.S.A. 83, 1413–1417 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Marks, J., Shaw, J. P. & Shen, C.-K. J. Nature 321, 785–788 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Marks, J. et al. Cold Spring Harb. Symp. quant. Biol. (in the press).

  4. Cheng, J.-F., Raid, L. & Hardison, R. C. J. biol. Chem. 261, 839–848 (1986).

    CAS  PubMed  Google Scholar 

  5. Sawada, I. & Schraid, C. W. J. molee. Biol. 192, 693–709 (1986).

    Article  CAS  Google Scholar 

  6. Clegg, J. B., Goodbourn, S. E. Y. & Braend, M. Nucleic Acids Res. 12, 7847–7858 (1984).

    Article  CAS  Google Scholar 

  7. Proudfoot, N. Nature 321, 730–731 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Gingerich, P. & Schoeninger, M. J. hum. Evol. 6, 483–505 (1977).

    Article  Google Scholar 

  9. Fleagle, J. in Major Topics in Primate and Human Evolution (eds Wood, B. A., Martin, L. & Andrews, P.) 130–149 (Cambridge University Press, 1986).

    Google Scholar 

  10. Sibley, C. & Ahlquist, J. J. molec. Evol. 20, 2–15 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Andrews, P. Nature 314, 398–499 (1985).

    Google Scholar 

  12. Zimmer, E. A., Martin, S., Beverley, S., Kan, Y. W. & Wilson, A. C. Proc. natn. Acad. Sci. U.S.A. 77, 2158–2162 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Maxam, A. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 74, 560–564 (1977).

    Article  ADS  CAS  Google Scholar 

  14. Perler, F. et al. Cell 20, 555–566 (1980).

    Article  CAS  Google Scholar 

  15. Proudfoot, N. & Maniatis, T. Cell 21, 537–544 (1980).

    Article  CAS  Google Scholar 

  16. Li, W.-H., Luo, C.-C. & Wu, C.-I. in Molecular Evolutionary Genetics (ed. MacIntyre, R. J.) 1–84 (Plenum, New York, 1985).

    Book  Google Scholar 

  17. Efstradiatis, A. et al. Cell 21, 653–668 (1980).

    Article  Google Scholar 

  18. Mahoney, W. & Nute, P. Biochemistry 19, 1529–1534 (1980).

    Article  CAS  Google Scholar 

  19. Hewett-Emmett, D. et al. in Molecular Anthropology (eds Goodman, M. & Tashian, R.) 257–275 (Plenum, New York, 1976).

    Book  Google Scholar 

  20. Dickerson, R. E. J. molec. Evol. 1, 26 (1971).

    Article  ADS  CAS  Google Scholar 

  21. Langley, C. H. & Fitch, W. M. J. molec. Evol. 3, 161–177 (1974).

    Article  ADS  CAS  Google Scholar 

  22. Wilson, A. C., Carlson, S. S. & White, T. J. A. Rev. Biochem. 46, 573–639 (1977).

    Article  CAS  Google Scholar 

  23. Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge University Press, London 1983).

    Book  Google Scholar 

  24. Czelusniak, J. et al. Nature 298, 297–300 (1982).

    Article  ADS  CAS  Google Scholar 

  25. Goodman, M. Prog. Biophys. molec. Biol. 38, 105–164 (1981).

    Article  CAS  Google Scholar 

  26. Proudfoot, N., Gil, A. & Maniatis, T. Cell 31, 553–563 (1982).

    Article  CAS  Google Scholar 

  27. Luckett, W. P. in Phylogeny of the Primates: A Multidisciplinary Approach (eds Luckett, W. P. & Szalay, F. S.) 157–182 (Plenum, New York, 1975).

    Book  Google Scholar 

  28. Martin, R. D. in Phylogeny of the Primates: A Multidisciplinary Approach (eds Luckett, W. P. & Szalay, F. S.) 265–297 (Plenum, New York, 1975).

    Book  Google Scholar 

  29. Liebhaber, S. A., Goossens, M. J. & Kan, Y. W. Nature 290, 26–29 (1981).

    Article  ADS  CAS  Google Scholar 

  30. Shaw, J.-P. et al. in Hemoglobin Switching V (ed. Stamatoyannopoulos, G., in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, JP., Marks, J. & Shen, CK. Evidence that the recently discovered θ1-globin gene is functional in higher primates. Nature 326, 717–720 (1987). https://doi.org/10.1038/326717a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/326717a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing