Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Monopoles in the rotating superfluid helium-3 A–B interface

Abstract

The 3He A–B interface provides an unprecedented type of super-fluid boundary between two degenerate macroscopically coherent quantum systems which display different broken symmetries. As a consequence, the rotating superfluid A–B phase boundary is here predicted to exhibit novel physical features: vortices in superfluid He cannot perforate as such across the A–B interface. Instead, at the rotating phase boundary, the macroscopic rotation condition is fulfilled by a lattice of monopoles—or by exotic vortices with half-integer circulation quanta. Here we suggest that the resulting areal density of monopoles which persist in the phase boundary possibly enables, for the first time, their experimental detection in superfluid 3He.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zel'dovich, Ya. B., Kobzarev, I. Yu. & Okun, L. B. Soviet Phys. JETP 67, 401–409 (1975).

    Google Scholar 

  2. Kibble, T. W. B. J. Phys. A 9, 1387–1398 (1976).

    ADS  Google Scholar 

  3. Kibble, T. W. B. Phys. Rep. 67, 183–199 (1980).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  4. Vilenkin, A. Phys. Rep. 121, 263–315 (1985).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  5. Zurek, W. H. Nature 317, 505–508 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Mineev, V. P., Salomaa, M. M. & Lounasmaa, O. V. Nature 324, 333–340 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Salomaa, M. M. and Volovik, G. E. Rev. mod. Phys. (in the press).

  8. Dirac, P. A. Proc. R. Soc. A 133, 60–72 (1931)

    Article  ADS  Google Scholar 

  9. Cabrera, B. Phys. Rev. Lett. 48, 1378–1381 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Volovik, G. E. JETP Lett. 29, 322–325 (1979).

    ADS  Google Scholar 

  11. Lavrentovich, O. D. JETP Lett. 43, 382–385 (1986).

    ADS  Google Scholar 

  12. Volovik, G. E. & Mineev, V. P. JETP Lett. 23, 593–595 (1976).

    ADS  Google Scholar 

  13. Blaha, S. Phys. Rev. Lett. 36, 874–876 (1976).

    Article  ADS  CAS  Google Scholar 

  14. Hu, C.–R., Kumar, P. & Maki, K. preprint, University of Southern California (1976).

  15. Hall, H. E. Physica 90B, 68–72 (1977).

    Google Scholar 

  16. Maki, K. Physica 90B, 84–93 (1977).

    Google Scholar 

  17. Volovik, G. E. & Mineev, V. P. Soviet Phys. JETP 45, 1186–1196 (1977).

    ADS  Google Scholar 

  18. Soni, V. Phys. Rev. B 18, 6076–6081 (1978).

    Article  ADS  CAS  Google Scholar 

  19. Bailin, D. & Love, A. J. Phys. C 11, 1351–1359 (1978).

    ADS  CAS  Google Scholar 

  20. Wheatley, J. C. Rev. mod. Phys. 47, 415–470 (1975).

    Article  ADS  CAS  Google Scholar 

  21. Paulson, D. N., Krusius, M. & Wheatley, J. C. J. Low Temp. Phys. 25, 699–715 (1976).

    Article  ADS  CAS  Google Scholar 

  22. Buchanan, D. S., Swift, G. W. & Wheatley, J. C. Phys. Rev. Lett. 57, 341–344 (1986).

    Article  ADS  CAS  Google Scholar 

  23. Yip, S. & Leggett, A. J. Phys. Rev. Lett. 57, 345–348 (1986).

    Article  ADS  CAS  Google Scholar 

  24. Kaul, R. & Kleinert, H. J. Low Temp. Phys. 38, 539–552 (1980).

    Article  ADS  CAS  Google Scholar 

  25. Salomaa, M. M. Phys. Rev. Lett. (submitted).

  26. Salomaa, M. M. & Volovik, G. E. Phys. Rev. Lett. 51, 2040–2043 (1983).

    Article  ADS  CAS  Google Scholar 

  27. Hindmarsh, M. & Kibble, T. W. B. Phys. Rev. Lett. 55, 2398–2400 (1985).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  28. Salomaa, M. M. & Volovik, G. E. Phys. Rev. Lett. 55, 1184–1187 (1985).

    Article  ADS  CAS  Google Scholar 

  29. Salomaa, M. M. & Volovik, G. E. Phys. Rev. Lett. 56, 1313 (1986).

    Article  ADS  CAS  Google Scholar 

  30. Salomaa, M. M. & Volovik, G. E. Europhys. Lett. 2, 781–787 (1986).

    Article  ADS  CAS  Google Scholar 

  31. 't Hooft, G. Nucl. Phys. B 79, 276–284 (1974).

    Article  ADS  Google Scholar 

  32. Polyakov, A. M. JETP Lett. 20, 194–195 (1974).

    ADS  Google Scholar 

  33. Pagels, H. R. Perfect Symmetry (Simon & Schuster, Inc., New York, 1985).

    Google Scholar 

  34. McClintock P. V. E., Meredith, D. J. & Wigmore, J. K. Matter at Low Temperatures (Blackie & Son Ltd, Glasgow and London, 1984).

    Google Scholar 

  35. Volovik, G. E. Soviet Phys. Usp. 27, 363–384 (1984).

    Article  ADS  Google Scholar 

  36. Wölfle, P. & Vollhardt, D. The Superfluid Phases of 3He (Taylor & Francis, London, in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salomaa, M. Monopoles in the rotating superfluid helium-3 A–B interface. Nature 326, 367–370 (1987). https://doi.org/10.1038/326367a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/326367a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing