Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Accelerated evolution in the reactive centre regions of serine protease inhibitors

Abstract

The serine protease inhibitors (serpins) are a family of proteins that function to control the action of serine proteases in many diverse physiological processes. The functional region or reactive centre of these inhibitors is near the C-terminal end and is an exposed site that acts as a bait for the appropriate serine protease to recognize and covalently bind. The specificity of the inhibitor is determined, at least in part, by a single amino acid that resides in this region at the P1 position1. We show here that following a gene duplication event the reactive centres of three related rodent protease inhibitors have diverged from each other at unprecedented rates. This has resulted in proteins with different predicted specificities and we postulate that these changes were fixed by positive darwinian selection and that the most likely selective forces are extrinsic proteases, namely those used by parasites to facilitate their spread throughout the host.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Travis, J. & Salvesen, G. S. A. Rev. Biochem. 52, 655–709 (1983).

    Article  CAS  Google Scholar 

  2. Hill, R. E., Shaw, P. H., Boyd, P. A., Baumann, H. & Hastie, N. D. Nature 311, 175–177 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Takahori, H. & Sinohara, H. J. biol. Chem. 257, 2435–2446 (1982).

    Google Scholar 

  4. Takahori, H. & Sinohara, H. J. Biochem., Tokyo 93, 1411–1419 (1983).

    Article  Google Scholar 

  5. Beatty, K., Bieth, J. & Travis, J. J. biol. Chem. 255, 3931–3934 (1980).

    CAS  PubMed  Google Scholar 

  6. Travis, J., Bowen, J. & Baugh, R. Biochemistry 17, 5651–5656 (1978).

    Article  CAS  Google Scholar 

  7. Laine, A., Davril, M. & Hayem, A. Biochem. biophys. Res. Commun. 105, 186–193 (1982).

    Article  CAS  Google Scholar 

  8. Hill, R. E., Shaw, P. H., Barth, R. K. & Hastie, N. D. Molec. cell. Biol. 5, 2114–2122 (1985).

    Article  CAS  Google Scholar 

  9. Baumann, H., Hill, R. E., Saunder, D. N. & Jahreis, G. P. J. Cell Biol. 102, 370–383 (1986).

    Article  CAS  Google Scholar 

  10. Li, W.-H., Wu, C.-I. & Luo, C.-C. Molec. Biol. Evol. 2, 150–174 (1985).

    PubMed  Google Scholar 

  11. Goodman, M. in Molecular Evolution (ed. Ayala, F. J.) 141–159 (Sinauer, Sunderland Massachusetts, 1976).

    Google Scholar 

  12. Goodman, M. Nature 295, 630 (1981).

    Article  ADS  Google Scholar 

  13. Kimura, M. J. Molec. Evol. 17, 110–113 (1981).

    Article  ADS  Google Scholar 

  14. Li, W.-H., Wu, C.-C. & Wu C.-I. in Molecular Evolutionary Genetics (ed. R. J. MacIntyre) 1–94 (Plenum, New York, 1985).

    Book  Google Scholar 

  15. Li, W.-H. Evolution of Genes and Proteins (eds Nei, M. & Koehn, R. K.) 14–37 (Sinauer, Sunderland, Massachusetts 1983).

    Google Scholar 

  16. Morii, M. & Travis, J. J. biol. Chem. 258, 12749–12752 (1983).

    CAS  PubMed  Google Scholar 

  17. Carrell, R. & Travis, J. Trends Biochem. Sci. 10, 20–24 (1985).

    Article  CAS  Google Scholar 

  18. Rosenberg, S., Barr, P. J., Najarian, R. C. & Hallewell, R. A. Nature 312, 77–80 (1984).

    Article  ADS  CAS  Google Scholar 

  19. Courtney, M. et al. Nature 313, 149–151 (1984).

    Article  ADS  Google Scholar 

  20. Bode, W. et al. EMBO J. 5, 2453–2458 (1986).

    Article  CAS  Google Scholar 

  21. McKerrow, J. H., Pino-Heiss, S., Lindquist, R. & Werb, Z. J. biol. Chem. 260, 3703–3707 (1985).

    CAS  PubMed  Google Scholar 

  22. Werb, Z., Banda, M. J., McKerrow, J. H. & Sandhaus, R. A. J. invest. Derm. 79, 154–159 (1982).

    Article  CAS  Google Scholar 

  23. Perler, F. et al. Cell 20, 555–565 (1980).

    Article  CAS  Google Scholar 

  24. Barth, R. K., Gross, K. W., Gremke, L. C. & Hastie, N. D. Proc. natn. Acad. Sci. U.S.A. 79, 500–504 (1982).

    Article  ADS  CAS  Google Scholar 

  25. Meehan, R. R., Barlow, D. P., Hill, R. E., Hogan, B. L. M. & Hastie, N. D. EMBO J. 3, 1881–1885 (1984).

    Article  CAS  Google Scholar 

  26. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, R., Hastie, N. Accelerated evolution in the reactive centre regions of serine protease inhibitors. Nature 326, 96–99 (1987). https://doi.org/10.1038/326096a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/326096a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing