Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A glucagon fragment is responsible for the inhibition of the liver Ca2+ pump by glucagon

Abstract

Glucagon specifically inhibits the Ca2+ pump in liver plasma membranes independently of adenylate cyclase activation1. However, this inhibition is only observed at high concentrations of glucagon (Ki = 0.7 µM). Moreover, in the presence of bacitracin, an inhibitor of glucagon degradation2, the Ca2+ pump is no longer sensitive to glucagon3. These findings suggest that a fragment of glucagon might be the true effector of the liver Ca2+ pump. Pairs of basic amino acids are recognized as potential cleavage sites in post-translational processing of peptide hormones4–6. The glucagon molecule includes a dibasic doublet (Arg 17–Arg 18). Therefore, we have examined the action of glucagon( 19–29) on the liver Ca2+ pump. This peptide was obtained from glucagon by tryptic cleavage and separated by reverse-phase high-performance liquid chromatography. We found that glucagon( 19–29), which is totally ineffective in activating adenylate cyclase, inhibited both the Ca2+-activated and Mg2+-dependent ATPase activity ((Ca2+-Mg2+) ATPase) and Ca2+ transport in liver plasma membranes with an efficiency 1,000-fold higher than that of glucagon. Glucagon(l–21) was completely inactive; glucagon( 18–29) and glucagon(22–29) acted only as partial agonists of glucagon( 19–29). These results indicate that glucagon( 19–29), obtained by proteolytic cleavage of glucagon, is likely to be the active peptide involved in the inhibition of the liver Ca2+ pump. We suggest that glucagon may be a precursor of at least one biologically active peptide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lotersztajn, S., Epand, R. M., Mallat, A. & Pecker, F. J. biol. Chem. 259, 8195–8201 (1984).

    CAS  PubMed  Google Scholar 

  2. Desbuquois, B., Krug, F. & Cuatrecasas, P. Biochim. biophys. Acta 343, 101–120 (1974).

    Article  CAS  PubMed  Google Scholar 

  3. Mallat, A., Pavoine, C., Lotersztajn, S. & Pecker, F. Fedn Proc. 44, 1392 (1985).

    Google Scholar 

  4. Steiner, D. F., Quinn, P. S., Chan, S. J., Marsh, J. & Tager, H. S. Ann. N.Y. Acad. Sci 343, 1–16 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Patzelt, C. & Schiltz, E. Proc. natn. Acad. Sci. U.S.A. 81, 5007–5011 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Georges, S. K., Uttenthal, L. O., Ghiglione, M., Bloom, S. R. FEBS Lett. 192, 275–278 (1985).

    Article  Google Scholar 

  7. Prpic, V., Green, K. C., Blackmore, P. F. & Exton, J. H. J. biol. Chem. 259, 1382–1385 (1984).

    CAS  PubMed  Google Scholar 

  8. Neville, D. M. Biochim. biophys. Acta 154, 540–552 (1968).

    Article  CAS  PubMed  Google Scholar 

  9. Hanoune, J., Lacombe, M.-L. & Pecker, F. J. biol. Chem. 250, 4569–4574 (1978).

    Google Scholar 

  10. Guellaen, G., Yates-Aggerbeck, M., Vauquelin, G., Strosberg, D. & Hanoune, J. J. biol. Chem. 253, 1114–1120 (1978).

    CAS  PubMed  Google Scholar 

  11. Clarke, W. R., Jones, L. R. & Lefkowitz, R. J. J. biol. Chem. 253, 5976–5979 (1978).

    Google Scholar 

  12. El-Refai, M. F., Blackmore, P. F. & Exton, J. H. J. biol. Chem. 254, 4375–4386 (1979).

    CAS  PubMed  Google Scholar 

  13. Billon, M. C., Dupre, G., Hanoune, J. Molec. cell. Endocr. 18, 99–108 (1980).

    Article  CAS  PubMed  Google Scholar 

  14. Frandsen, E. K., Thim, L., Moody, A. J. & Markussen, J. J. biol. Chem. 260, 7581–7584 (1985).

    CAS  PubMed  Google Scholar 

  15. Wright, D. E., Hruby, V. J. & Rodbell, M. J. biol. Chem. 253, 6338–6340 (1978).

    CAS  PubMed  Google Scholar 

  16. Heinrich, G., Gros, P., Habener, J. F. J. biol. Chem. 259, 14082–14087 (1984).

    CAS  PubMed  Google Scholar 

  17. Bell, G. I., Santerre, R. F. & Mullenbach, G. T. Nature 302, 716–718 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Jarrousse, C. et al. FEBS Lett. 188, 81–84 (1985).

    Article  CAS  PubMed  Google Scholar 

  19. Bataille, D. et al. FEBS Lett. 146, 79–86 (1982).

    Article  CAS  PubMed  Google Scholar 

  20. Martinez, J. & Potier, J. Trends pharmac. Sci. 4, 139–147 (1986).

    Article  Google Scholar 

  21. Tanaka, K., Nakamura, T. & Ichihara, A. J. biol. Chem. 261, 2610–2615 (1986).

    CAS  PubMed  Google Scholar 

  22. Schepper, J. M., Hughes, E. F., Postel-Vinay, M. C. & Hughes, J. P. J. biol. Chem. 259, 12945–12948 (1984).

    CAS  PubMed  Google Scholar 

  23. Peavy, D. E., Brunner, M. R., Duckworth, W. C., Hooker, C. S. & Frank, B. H. J. biol. Chem. 260, 13989–13994 (1985).

    CAS  PubMed  Google Scholar 

  24. Snyder, R. A., Watt, K. W. K. & Wintroub, B. U. J. biol. Chem. 260, 7857–7860 (1985).

    CAS  PubMed  Google Scholar 

  25. Burbach, J. P. H., Kovacs, G. L., De Wied, D., Van Nispen, J. W. & Greven, H. M. Science 221, 1310–1312 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Maciag, T. et al. J. biol. Chem. 255, 6064–6070 (1980).

    CAS  PubMed  Google Scholar 

  27. Wakelam, J. O., Murphy, G. J., Hruby, V. J. & Houslay, M. D. Nature 323, 68–71 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Cockroft, S. & Gomperts, B. D. Nature 314, 534–536 (1985).

    Article  ADS  Google Scholar 

  29. Kallner, A. Clin. chim. Acta 59, 35–39 (1975).

    Article  CAS  PubMed  Google Scholar 

  30. Bataille, D., Coudray, A. M., Carlqvist, M., Rosselin, G. & Mutt, V. FEBS Lett. 146, 73–78 (1982).

    Article  CAS  PubMed  Google Scholar 

  31. Fleury, M. O. & Ashley, D. V. Analyt. Biochem. 133, 330–335 (1983).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallat, A., Pavoine, C., Dufour, M. et al. A glucagon fragment is responsible for the inhibition of the liver Ca2+ pump by glucagon. Nature 325, 620–622 (1987). https://doi.org/10.1038/325620a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325620a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing