Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Superluminal motion in the double-lobed quasar 3C263

Abstract

Apparent faster-than-light motion has been detected with very long baseline interferometry (VLBI) in the central regions of 12 extragalactic radio sources1,2. These are typically strong, core-dominated objects and, so far the only weak-cored classical double radio source to show the effect was 3C179 (ref. 3). Unified source models4–6, which invoke relativistic motion at a small angle to the observer's line of sight, predict that large superluminal motion Should be rarely seen in a randomly oriented sample of such objects. These models have motivated statistical studies of quasar samples7–9, designed to detect superluminal objects and, subsequently, to compare the distribution of velocities with model predictions. Here we report the detection of superluminal motion in the quasar 3C263. The milliarc second structure of this source consists of two nearly unresolved components, whose separation is increasing at a rate of 0.06 ±0.02 marc s yr−1. This corresponds to an expansion speed of 2.7±0.9 c (H0=55 kms−1 Mpc−1, q0=0.05). This quasar is the weakest superluminal source found so far, and there are indications that superluminal motion occurs frequently in this class of object.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cohen, M. H. & Unwin, S. C. IAU Symp. 110, 95–103 (1984).

  2. Porcas, R. W. in Active Galactic Nuclei 20–49 (ed. Dyson, J. E.) (Manchester University Press, 1985).

    Google Scholar 

  3. Porcas, R. W. Nature 294, 47–49 (1981).

    Article  ADS  Google Scholar 

  4. Scheuer, P. A. G. & Readhead, A. C. S. Nature 277, 182–185 (1979).

    Article  ADS  Google Scholar 

  5. Blandford, R. D. & Königl, A. Astrophys. J. 232, 34–48 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Orr, M. J. L. & Browne, I. W. A. Mon. Not. R. astr. Soc. 200, 1067–1080 (1982).

    Article  ADS  Google Scholar 

  7. Hough, D. H. Thesis, California Institute of Technology (1986).

  8. Zensus, J. A. & Porcas, R. W. IAU Symp. 110, 163–164 (1984).

  9. Zensus, J. A. & Porcas, R. W. IAU Symp. 119, 167–168 (1986).

  10. Grandi, S. A. & Tifft, W. G. Publs astr. Soc. Pacif. 86, 873–884 (1974).

    Article  ADS  Google Scholar 

  11. Pooley, G. G. & Henbest, S. N. Mon. Not. R. astr. Soc. 169, 477–526 (1974).

    Article  ADS  Google Scholar 

  12. Owen, F. N., Porcas, R. W. & Neff, S. G. Astr. J. 83, 1009–1020 (1978).

    Article  ADS  Google Scholar 

  13. Shone, D. L. Thesis, Univ. Manchester (1985).

  14. Kühr, H., Witzel, A., Pauliny-Toth, I. I. K. & Nauber, U. Astr. Astrophys. Suppl. Ser. 45, 367–430 (1981).

    ADS  Google Scholar 

  15. Ekers, R. D., Fanti, R. & Miley, G. K. Astr. Astrophys. 120, 297–301 (1983).

    ADS  Google Scholar 

  16. Seielstad, G. A., Pearson, T. J. & Readhead, A. C. S. Publ. astr. Soc. Pacif. 95, 842–872 (1983).

    Article  ADS  Google Scholar 

  17. Barthel, P. D. et al. Astr. Astrophys. 140, 399–404 (1984); Astr. Astrophys. 151, 131–136 (1985).

    ADS  Google Scholar 

  18. Rogers, A. E. E. et al. Science 219, 51–54 (1983).

    Article  ADS  CAS  Google Scholar 

  19. Readhead, A. C. S. & Wilkinson, P. N. Astrophys. J. 223, 25–36 (1978).

    Article  ADS  Google Scholar 

  20. Cornwell, T. J. & Wilkinson, P. N. Mon. Not. R. astr. Soc. 196, 1067–1086 (1981).

    Article  ADS  Google Scholar 

  21. Pearson, T. J. & Readhead, A. C. S. A. Rev. Astr. Astrophys. 22, 97–130 (1984).

    Article  ADS  Google Scholar 

  22. Gull, S. F. & Daniell, G. J. Nature 272, 686–690 (1978).

    Article  ADS  Google Scholar 

  23. Pearson, T. J. et al. IAU Sym. 119, 163–164 (1986).

  24. Eckart, A. et al. Astr. Astrophys. (in the press).

  25. Zensus, J. A., Porcas, R. W. & Pauliny-Toth, I. I. K. Astr. Astrophvs. 133, 27–30 (1984).

    ADS  Google Scholar 

  26. Readhead, A. C. S. et al. Nature 276, 768–771 (1978).

    Article  ADS  Google Scholar 

  27. Cohen, M. H. & Unwin, S. C. IAU Symp. 97, 345–354 (1982).

  28. Hooley, A., Longair, M. S. & Riley, J. M. Mon. Not. R. astr. Soc. 182, 127–145 (1978).

    Article  ADS  Google Scholar 

  29. Schilizzi, R. T. & deBruyn, A. G. Nature 303, 26–31 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zensus, J., Hough, D. & Porcas, R. Superluminal motion in the double-lobed quasar 3C263 . Nature 325, 36–38 (1987). https://doi.org/10.1038/325036a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325036a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing