Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The correct activation of Antennapedia and bithorax complex genes requires the fushi tarazu gene

Abstract

In the Drosophila embryo the establishment and specification of metameric units depends upon the selective activation of the segmentation1,2 and the homoeotic selector genes3,4. The former are necessary for establishing the appropriate number of metameric2 or parasegmental5 units, whereas the latter control the pathways of differentiation followed by particular parasegments3,4. Classical embryological manipulations6,7 have shown that these processes must be closely coordinated during normal development. However, previous studies of pair-rule genes have led to the suggestion that the specification of segmental identity proceeds independently of the establishment of metameres as physical units1,8. These apparently conflicting perspectives can be reconciled by envisaging a common maternally derived positional information system which is independently interpreted by the components of both processes6,9. In the case of the partitioning process, the gap and pair-rule genes would be instrumental in translating this information, whereas the activation of the homeotic genes would be mediated via other intermediaries4,10 (see ref. 9 for review). It is difficult to see, however, how such a system could ensure the precise regulation of the two types of genes implicit in the final differentiated pattern. This difficulty has led to the suggestion that the segmentation mechanism must define the precise boundaries of selector gene expression11. Here we confirm this suggestion and propose that the gene fushi tarazu plays a key role in this process, integrating the processes of metameric partitioning and regional specification in the Drosophila embryo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nüsslein-Volhard, C. & Wieschaus, E. Nature 287, 795–801 (1980).

    Article  ADS  Google Scholar 

  2. Nüsslein-Volhard, C., Wieschaus, E. & Jürgens, G. Verh. dt. zool. Ges. 91–104 (1982).

  3. Garcia-Bellido, A. Ciba Fdn Symp. 29, 161–182 (1975).

    Google Scholar 

  4. Lewis, E. B. Nature 276, 565–570 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Martinez-Arias, A. & Lawrence, P. A. Nature 313, 639–642 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Sander, K. Adv. Insect Physiol. 12, 125–238 (1976).

    Article  Google Scholar 

  7. Newman, J. M. & Schubiger, G. Devl Biol. 79, 128–138.

  8. Sander, K., Lohs-Schardin, M. & Baumann, N. Nature 287, 841–843 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Lawrence, P. A. Cell 26, 3–10 (1981).

    Article  CAS  Google Scholar 

  10. Struhl, G. Nature 293, 36–41 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Akam, M. E. Phil. Trans. R. Soc. B312, 179–187 (1985).

    Article  Google Scholar 

  12. Wakimoto, B. T. & Kaufman, T. C. Devl Biol. 81, 51–64 (1981).

    Article  CAS  Google Scholar 

  13. Lewis, R. A., Kaufman, T. C., Denell, R. E. & Tallerico, P. Genetics 95, 367–381 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Scott, M. P. & Weiner, A. Proc. natn. Acad. Sci. U.S.A. 81, 4115–4119 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Laughon, A. & Scott, M. P. Nature 310, 25–31 (1984).

    Article  ADS  CAS  Google Scholar 

  16. McGinnis, W., Levine, M., Hafen, E., Kuroiwa, A. & Gehring, W. J. Nature 308, 428–433 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Wakimoto, B. T., Turner, I. R. & Kaufman, T. C. Devl Biol. 102, 147–172 (1984).

    Article  CAS  Google Scholar 

  18. Weiner, A. J., Scott, M. P. & Kaufman, T. C. Cell 37, 843–851 (1984).

    Article  CAS  Google Scholar 

  19. Howard, K. R. & Ingham, P. W. Cell 44, 949–957 (1986).

    Article  CAS  Google Scholar 

  20. DiNardo, S., Kuner, J. M., Theis, J. & O'Tarrell, P. H. Cell 43, 59–69 (1985).

    Article  CAS  Google Scholar 

  21. Kornberg, T., Siden, I., O'Tarrell, P. & Simon, M. Cell 40, 45–53 (1985).

    Article  CAS  Google Scholar 

  22. Ingham, P. W., Martinez-Arias, A., Lawrence, P. A. & Howard, K. R. Nature 317, 634–636 (1985).

    Article  ADS  Google Scholar 

  23. Akam, M. E. & Martinez-Arias, A. EMBO J. 4, 1689–1700 (1985).

    Article  CAS  Google Scholar 

  24. Martinez-Arias, A. EMBO J. 5, 135–141 (1985).

    Article  Google Scholar 

  25. Martinez-Arias, A., Ingham, P. W., Scott, M. P. & Akam, M. E. Development (submitted).

  26. Martinez-Arias, A., Scott, M. P. & Akam, M. E. (in preparation).

  27. White, R. A. H. & Lehmann, R. Cell 47, 311–321 (1986).

    Article  CAS  Google Scholar 

  28. White, R. A. H. & Wilcox, M. EMBO J. 4, 2035–2044 (1985).

    Article  CAS  Google Scholar 

  29. Harding, K., Weeden, C., McGinnis, W. & Levine, M. Science 229, 1236–1242 (1985).

    Article  ADS  CAS  Google Scholar 

  30. Hafen, E., Levine, M. & Gehring, W. J. Nature 307, 287–289 (1984).

    Article  ADS  CAS  Google Scholar 

  31. Carroll, S., Laymon, R. A., McCutcheon, A., Riley, P. D. & Scott, M. P. Cell 47, 113–122 (1986).

    Article  CAS  Google Scholar 

  32. Ingham, P. W., Ish-Horowicz, D. & Howard, K. R. EMBO J. 5, 1659–1665 (1986).

    Article  CAS  Google Scholar 

  33. Martinez-Arias, A., Akam, M. E. & Ingham, P. W. (in preparation).

  34. Carroll, S. B. & Scott, M. P. Cell 45, 113–126 (1986).

    Article  CAS  Google Scholar 

  35. Knipple, D., Seifert, E., Rosenberg, U., Preiss, A. & Jäckie, H. Nature 317, 40–44 (1985).

    Article  ADS  CAS  Google Scholar 

  36. Lehman, R. thesis, Tübingen Univ. (1985).

  37. Mlodzik, M., Fjose, A. & Gehring, W. J. EMBO J. 4, 2961–2969 (1985).

    Article  CAS  Google Scholar 

  38. Schüpbach, T. & Wieschaus, E. Wilhelm Roux Arch. dev. Biol. 195, 302–317 (1986).

    Article  Google Scholar 

  39. Capdevila, M. P. & Garcia-Bellido, A. Wilhelm Roux Arch. dev. Biol. 190, 1339–350 (1981).

    Article  Google Scholar 

  40. Meinhardt, H. J. Cell Sci. Suppl. 4, 357–387 (1986).

    Article  CAS  Google Scholar 

  41. White, R. A. H. & Wilcox, M. Cell 39, 163–171 (1984).

    Article  CAS  Google Scholar 

  42. Jürgens, G., Wieschaus, E., Nüsslein-Volhard, C. & Kluding, H. Wilhelm Roux Arch. dev. Biol. 193, 283–296 (1984).

    Article  Google Scholar 

  43. Ingham, P. W., Howard, K. R. & Ish-Horowicz, D. Nature 318, 439–445 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ingham, P., Martinez-Arias, A. The correct activation of Antennapedia and bithorax complex genes requires the fushi tarazu gene. Nature 324, 592–597 (1986). https://doi.org/10.1038/324592a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/324592a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing