Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Organ pipe radiant modes of periodic micromachined silicon surfaces

Abstract

In recent studies on small pyroelectric thermal anemometers with roughened surfaces we showed that one of the most widely used heat transfer models1,2 yielded calculated anemometer responses for flow and geometric behaviour that agreed functionally with observations, but were significantly smaller than the experimental data3–5. As the first stage in investigating the role of small structures in heat transfer, we initiated a study of emittance from deep gratings. Here we report measurements at 400 °C of infrared (3 µmλ14 µm), normal, s- and p-polarized spectral emittances of 45 µm deep, near square-wave gratings of heavily phosphorus doped (110) silicon (P content 5 × 1019 cm−3). The grating surface repeat scales, Λ, were 10, 14, 18 and 22µm, yielding a range of Λ/λ from 0.14 to 7.33. The s-polarization vector was parallel to the grating slots. Both s and p spectral emittances had pronounced resonant periodicities with a characteristic length of 42 µm. A reasonable explanation for this behaviour is the presence of standing waves in the air slots perpendicular to the silicon surface similar to those in an organ pipe. While the resonant amplitude of the s polarization does not depend significantly on Λ it does for the p polarization. No explanation for the Λ dependence of the p polarization is known.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schlichting, H. Boundary Layer Theory (McGraw Hill, New York, 1968).

    MATH  Google Scholar 

  2. Gebhart, B. Heat Transfer (McGraw Hill, New York, 1961).

    Google Scholar 

  3. Rahnamai, H. & Zemel, J. N. Sensor Actual. 2, 1–16 (1981).

    Article  Google Scholar 

  4. Frederick, J. R., Zemel, J. N. & Goldfine, N. F. J. appl. Phys. 57, 4936–4943 (1985).

    Article  ADS  Google Scholar 

  5. Hesketh, P., Zemel, J. N. & Gebhart, B. J. appl. Phys. 57, 4944–4949 (1985).

    Article  ADS  Google Scholar 

  6. Planck, M. Theory of Heat Radiation (Eng. trans. of Theorie der Warmestrahlung, 2nd edn 1913) (Dover, New York, 1959).

    MATH  Google Scholar 

  7. Siegel, R. & Howell, J. R. Thermal Radiation Heat Transfer 2nd edn (McGraw Hill, New York, 1981).

    Google Scholar 

  8. Baltes, H. P. Infrared Phys. 16, 1–8 (1976).

    Article  ADS  Google Scholar 

  9. Derrick, G. H., McPhedran, R. C., Maystre, D. & Neviere, M. Appl. Phys. 18, 39–52 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Elson, J. M. & Sung, C. C. Appl. Opt. 21, 1496–1501 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Chang, R. K. & Furak, T. E. (eds) Surface Enhanced Raman Scattering (Plenum, New York, 1982).

    Google Scholar 

  12. Fano, U. J. opt. Soc. Am. 31, 213–222 (1941).

    Article  ADS  Google Scholar 

  13. Hessel, A. & Oliner, A. A. Appl. Opt. 4, 1275–1297 (1965).

    Article  ADS  Google Scholar 

  14. Wirgin, A. & Maradudin, A. A. Phys. Rev. B31, 5573–5576 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Maystre, D. in Electromagnetic Surface Modes (ed. Boardman, A. D.) 166 (Wiley, New York, 1982).

    Google Scholar 

  16. Glass, N. E., Maradudin, A. A. & Celli, V. Phys. Rev. B27, 5150–5153 (1983).

    Article  ADS  Google Scholar 

  17. Garcia, N. & Maradudin, A. A. Opt. Commun. 45, 306–310 (1983).

    ADS  Google Scholar 

  18. Wirgin, A. & Maradudin, A. A. Appl. Surf. Sci. (submitted).

  19. Stierwalt, D. L. & Potter, R. F. Proc. int. Conf. on the Physics of Semiconductors, Exeter, 513 (Institute of Physics and the Physical Society, London, 1962).

    Google Scholar 

  20. Stierwalt, D. L. Appl. Opt. 5, 1911–1915 (1966).

    Article  ADS  CAS  Google Scholar 

  21. Stierwalt, D. L. & Potter, R. F. in Semiconductors and Semimetals Vol. 3 (eds Willardson, R. K. & Beer, A. C.) (Academic, New York, 1968).

    Google Scholar 

  22. Lofving, S. Appl. phys. Lett. 36, 632–633 (1980).

    Article  ADS  Google Scholar 

  23. Edwards, D. K. Advances in Thermophysical Properties at Extreme Temperatures and Pressure, 3 int. Symp. 189 (ASME, New York, 1965).

    Google Scholar 

  24. Kanayama, K. Heat Transfer—Jap. Res. 1, 11–21 (1972).

    Google Scholar 

  25. Rolling, R. E. Progress in Astronautics and Aeronautics: Thermophysical Properties of Spacecraft and Planetary Bodies (ed. Heller, G. B.) (Academic, New York, 1967).

    Google Scholar 

  26. Craig, S. & Harding, G. L. Sol. Energy Mater. 4, 245–264 (1981).

    Article  CAS  Google Scholar 

  27. Petit, G. D., Cuomo, J. J., DiStefano, T. H. & Woodall, J. M. IBMJ. Devl. 22, 372–377 (1978).

    Article  Google Scholar 

  28. Church, E. L., Jenkinson, H. A. & Zawada, J. M. Opt. Engng. 16, 380–385 (1977).

    Article  ADS  Google Scholar 

  29. Inagaki, T., Goudennet, J. P., Little, J. W. & Arakawa, E. T. J. opt. Soc. Am. B2, 433–439 (1985).

    Article  ADS  CAS  Google Scholar 

  30. Baltes, H. P. & Hilf, E. R. Spectra of Finite Systems (Bibliographisces Institute, Zurich, 1976).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hesketh, P., Zemel, J. & Gebhart, B. Organ pipe radiant modes of periodic micromachined silicon surfaces. Nature 324, 549–551 (1986). https://doi.org/10.1038/324549a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/324549a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing