Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of pre-pro-von Willebrand factor and its expression in heterologous cells

Abstract

Von Willebrand factor (vWF), a multifunctional haemostatic glycoprotein derived from endothelial cells and megakaryocytes, mediates platelet adhesion to injured subendothelium and binds coagulation factor VIII in the circulation. Native vWF is a disulphide-bonded homopolymer; the monomeric subunits, of apparent relative molecular mass (Mr) 220,000 (220K) are derived from an intracellular precursor estimated at 260–275K (refs 1–5). Multimer assembly is preceded by the formation of dimers, linked near their C-termini, which then assemble into filamentous polymers. The importance of the removal of the large vWF pro-polypeptide during multimer assembly, and whether this or other stages of the complex post-translational processing require components specific to endothelial cells or megakaryocytes, is unknown. Here we report an analysis of the complete sequence of pre-pro-vWF and expression of the molecule in heterologous cells. The vWF precursor is composed of several repeated subdomains. When expressed in COS and CHO cells, it is cleaved and assembled into biologically active high relative molecular mass disulphide bonded multimers. This suggests that the information for assembly of this complex molecule resides largely within its primary structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Legaz, M. E. et al. J. biol. Chem. 248, 3946–3955 (1973).

    CAS  PubMed  Google Scholar 

  2. Shapiro, G. A. et al. J. clin. Invest. 52, 2198–2210 (1973).

    Article  CAS  Google Scholar 

  3. Wagner, D. D. & Marder, V. J. J. biol. Chem. 258, 2065–2067 (1983).

    CAS  PubMed  Google Scholar 

  4. Lynch, D.C. et al. J. biol. Chem. 258, 12757–12760 (1983).

    CAS  PubMed  Google Scholar 

  5. Wagner, D. D. & Marder, V. J. J. Cell Biol. 99, 2123–2130 (1984).

    Article  CAS  Google Scholar 

  6. Fay, P. J. et al. Science 232, 995–998 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Perlman, D. & Halvorson, H. O. J. molec. Biol. 167, 391–409 (1983).

    Article  CAS  Google Scholar 

  8. Federici, A. B. et al. J. clin. Invest. 74, 2049–2055 (1984).

    Article  CAS  Google Scholar 

  9. Sadler, J. E. et al. Proc. natn. Acad. Sci. U.S.A. 82, 6394–6398 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Shelton-Inloes, B. B., Titani, K. & Sadler, J. E. Biochemistry 25, 3164–3171 (1986).

    Article  CAS  Google Scholar 

  11. Counts, R. B., Paskell, S. L. & Elgee, S. K. J. clin. Invest. 62, 702–709 (1978).

    Article  CAS  Google Scholar 

  12. Hessel, B. et al. Thromb. Res. 35, 637–651 (1984).

    Article  CAS  Google Scholar 

  13. Ohmori, K. et al. J. Cell Biol. 95, 632–640 (1982).

    Article  CAS  Google Scholar 

  14. Slayter, H. et al. J. biol. Chem. 260, 8559–8563 (1985).

    CAS  PubMed  Google Scholar 

  15. Fowler, W. E. et al. J. clin. Invest. 76, 1491–1500 (1985).

    Article  CAS  Google Scholar 

  16. Mosher, D. F. Prog. Hemost. Thromb. 5, 111–151 (1980).

    CAS  PubMed  Google Scholar 

  17. Doolittle, R. F. Scient. Am. 245, 126–130 (1981).

    Article  CAS  Google Scholar 

  18. Pierschbacher, M. D. & Ruoslahti, E. Nature 309, 30–33 (1984).

    Article  ADS  CAS  Google Scholar 

  19. Pytela, R. et al. Science 231, 1559–1562 (1986).

    Article  ADS  CAS  Google Scholar 

  20. Ruoslahti, E. & Pierschbacher, M. D. Cell 44, 517–518 (1986).

    Article  CAS  Google Scholar 

  21. Kaufman, R. J. et al. Proc. natn. Acad. Sci. U.S.A. 83, 3136–3140 (1986).

    Article  ADS  CAS  Google Scholar 

  22. Goodman, R. H. et al. J. biol. Chem. 257, 1156–1159 (1982).

    CAS  PubMed  Google Scholar 

  23. Vasicek, T. J. et al. Proc. natn. Acad. Sci. U.S.A. 80, 2127–2131 (1983).

    Article  ADS  CAS  Google Scholar 

  24. Bell, G. I. et al. Nature 304, 368–371 (1983).

    Article  ADS  CAS  Google Scholar 

  25. Wiborg, O. et al. Proc. natn. Acad. Sci. U.S.A. 81, 1067–1069 (1984).

    Article  ADS  CAS  Google Scholar 

  26. Rosenfeld, M. G., Amara, S. G. & Evans, R. M. Science 225, 1315–1320 (1984).

    Article  ADS  CAS  Google Scholar 

  27. Leiter, A. B. et al. J. biol. Chem. 260, 13013–13017 (1985).

    CAS  PubMed  Google Scholar 

  28. Warren, T. G. & Shields, D. Cell 39, 547–555 (1984).

    Article  CAS  Google Scholar 

  29. Bockenstedt, P., Greenberg, J. M. & Handin, R. I. J. clin. Invest. 77, 743–749 (1986).

    Article  CAS  Google Scholar 

  30. Bockenstedt, P., McDonagh, J. & Handin, R. I. J. clin. Invest. 78, 551–556 (1986).

    Article  CAS  Google Scholar 

  31. Lynch, D. C. et al. Cell 41, 49–56 (1985).

    Article  CAS  Google Scholar 

  32. Ginsberg, D. et al. Science 228, 1401–1406 (1985).

    Article  ADS  Google Scholar 

  33. Verveij, C. L. et al. Nucleic Acids Res. 13, 4699–4717 (1985).

    Article  Google Scholar 

  34. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  35. Biggin, M. D., Gibson, T. J. & Hong, G. F. Proc. natn. Aad. Sci. U.S.A. 80, 3963–3965 (1983).

    Article  ADS  CAS  Google Scholar 

  36. Poncz, M. et al. Proc. natn. Acad. Sci. U.S.A. 79, 4298–4302 (1982).

    Article  ADS  CAS  Google Scholar 

  37. Dale, R. M. K., McClure, B. A. & Houchins, J. P. Plasmid 13, 31–40 (1985).

    Article  CAS  Google Scholar 

  38. Chen, E. Y. & Seeburg, P. H. DNA 4, 165–170 (1985).

    Article  CAS  Google Scholar 

  39. Vieira, J. & Messing, J. Gene 19, 259–268 (1982).

    Article  CAS  Google Scholar 

  40. Wong, G. G. et al. Science 228, 810–815 (1985).

    Article  ADS  CAS  Google Scholar 

  41. Orkin, S. H. et al. Molec. cell. Biol. 5, 762–767 (1985).

    Article  CAS  Google Scholar 

  42. Sandri-Goldin, R. M. et al. Molec. cell. Biol. 1, 743–752 (1981).

    Article  CAS  Google Scholar 

  43. Lopata, M. A., Cleveland, D. W. & Sollner-Webb, B. Nucleic Acids Res. 12, 5707–5717 (1984).

    Article  CAS  Google Scholar 

  44. Luthman, H. & Magnusson, G. Nucleic Acids Res. 11, 1295–1308 (1983).

    Article  CAS  Google Scholar 

  45. Kaufman, R. J. Proc. natn. Acad. Sci. U.S.A. 82, 689–693 (1985).

    Article  ADS  CAS  Google Scholar 

  46. Kaufman, R. J. et al. Molec. cell. Biol. 5, 1750–1759 (1985).

    Article  CAS  Google Scholar 

  47. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  48. Bonthron, D. T. et al. Nucleic Acids Res. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonthron, D., Handin, R., Kaufman, R. et al. Structure of pre-pro-von Willebrand factor and its expression in heterologous cells. Nature 324, 270–273 (1986). https://doi.org/10.1038/324270a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/324270a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing