Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Common evolutionary origin of legume and non-legume plant haemoglobins

Abstract

The detection of haemoglobins in distantly-related non-legume plant families1,2 as well as in the legume families raises the question of whether the origin of the plant haemoglobins was single or multiple, We have isolated a haemoglobin gene from Parasponia andersonii (Ulmaceae) which shows more than 50% nucleotide sequence homology with the haemoglobin genes of legume plants and has three introns at identical positions to the leghaemoglobin introns3–5. The Parasponia gene has homology to haemoglobin genes in another distantly-related nodulating plant, Casuarina. It also hybridizes at high stringency to sequences in a related, but non-nodulating genus, Trema. We conclude that the globin gene family may be widespread in modern plants, that plant haemoglobins may have a cryptic function in non-symbiotic tissue and that plant haemoglobins have evolved by vertical descent, probably from an ancestor common to modern plants and animals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tjepkema, J. D. Can. J. Bot. 61, 2924–2929 (1983).

    Article  CAS  Google Scholar 

  2. Appleby, C. A. A. Rev. Pl. Physiol. 35, 443–478 (1984).

    Article  CAS  Google Scholar 

  3. Hyldig-Nielsen, J. J. et al. Nucleic Acids Res. 10, 689–701 (1982).

    Article  CAS  Google Scholar 

  4. Wiborg, O., Hyldig-Nielsen, J. J., Jensen, E. Ø., Paludan, K. & Marcker, K. A. Nucleic Acids Res. 10, 3487–3494 (1982).

    Article  CAS  Google Scholar 

  5. Lee, J. S. & Verma, D. P. S. EMBO J. 3, 2745–2752 (1984).

    Article  CAS  Google Scholar 

  6. Trinick, M. J. & Galbraith, J. New Phytol. 86, 17–26 (1980).

    Article  Google Scholar 

  7. Akkermans, A. D. L. & van Dijk, C. in Nitrogen Fixation Vol. 1 (ed. Broughton, W. J.) 57–103 (Clarendon, Oxford, 1981).

    Google Scholar 

  8. Appleby, C. A., Tjepkema, J. D. & Trinick, M. J. Science 220, 951–953 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Kortt, A. A., Burns, J. E., Trinick, M. J. & Appleby, C. A. FEBS Lett. 180, 55–60 (1985).

    Article  CAS  Google Scholar 

  10. Fleming, A. I., Wittenberg, J. B., Wittenberg, B. A., Dudman, W. F. & Appleby, C. A., Biochim. biophys. Acta (in the press).

  11. Cronquist, A., An Integrated System of Classification of Flowering Plants (Columbia University Press, New York, 1981).

    Google Scholar 

  12. Dahlgren, R. M. T. Bot. J. Linn. Soc. 80, 91–124 (1980).

    Article  Google Scholar 

  13. Dickerson, R. E. & Geis, J. in Hemoglobin: Structure, Function, Evolution and Pathology, 68–69 (Benjamin/Cummings, California, 1983).

    Google Scholar 

  14. Blanchetot, A., Wilson, V., Wood, D. & Jeffreys, A. J. Nature 301, 732–734 (1983).

    Article  ADS  CAS  Google Scholar 

  15. Efstratiadis, A. et al. Cell 21, 653–668 (1980).

    Article  CAS  Google Scholar 

  16. Antoine, M. & Niessing, J. Nature 310, 795–798 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Gō, M. Nature 291, 90–92 (1981).

    Article  ADS  Google Scholar 

  18. Zharkikh, A. A., Solovyov, V. V. & Kolchanov, N. A. J. molec. Evol. 21, 42–53 (1984).

    Article  ADS  CAS  Google Scholar 

  19. Runnegar, B. J. molec. Evol. 21, 33–41 (1984).

    Article  ADS  CAS  Google Scholar 

  20. Dayhoff, M. O., Hunt, L. J., McLauchlin, P. J. & Jones, D. D. in Atlas of Protein Sequence and Structure (ed. Dayhoff, M. O.) 17–30 (National Biomedical Research Foundation, Washington, 1972).

    Google Scholar 

  21. Akkermans, A. D. L., Abdulkadir, S. & Trinick, M. J. Pl. Soil 49, 711–715 (1978).

    Article  CAS  Google Scholar 

  22. Maniatis, T., Fritsch, E. F. & Sambrook, J., Molecular Cloning: a Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  23. Gubler, U. & Huffman, B. J. Gene 25, 263–269 (1983).

    Article  CAS  Google Scholar 

  24. Messing, J. Meth. Enzymol. 101, 20–78 (1983).

    Article  CAS  Google Scholar 

  25. Hanahan, D. J. molec. Biol. 166, 557–580 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landsmann, J., Dennis, E., Higgins, T. et al. Common evolutionary origin of legume and non-legume plant haemoglobins. Nature 324, 166–168 (1986). https://doi.org/10.1038/324166a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/324166a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing