Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Predicting aqueous aluminium concentrations in natural waters

Abstract

Aluminium is a pH-sensitive element that can cause acute toxicity symptoms in some organisms at aqueous activities of 10 µM or less1–3. Scientists working on agricultural systems have long been concerned with the deleterious effects of aluminium on crop roots4,5. More recently, environmental scientists have reported a potentially harmful biogeochemical link between acidic deposition onto forest soils and aluminium toxicity in forest and aquatic communities of northeastern North America and northern Europe6–8. Because of this general interest in aluminium toxicity as an environmental threat, there have been renewed efforts to model the chemistry and transport of aqueous aluminium in soils and surface waters. Here we propose that much of the spatial and temporal variability in aqueous aluminium chemistry can be accounted for by a two-component equilibrium model involving a solid-phase humic adsorbent and an aluminium trihydroxide mineral phase. Inputs for the model are solution pH, copper-extractable organic aluminium and the titratable carboxyl content of soil humus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Haug, A. CRC Crit. Rev. Pl. Sci. 1, 345–373 (1984).

    Article  CAS  Google Scholar 

  2. Baker, J. P. & Schofield, C. L. Wat. Air, Soil Pollut. 18, 289–309 (1982).

    Article  CAS  ADS  Google Scholar 

  3. Hue, N. V., Craddock, G. R. & Adams, F. Soil Sci. Soc. Am. J. 50, 28–34 (1986).

    Article  CAS  ADS  Google Scholar 

  4. Hardy, F. J. agric. Sci. 16, 616–630 (1926).

    Article  CAS  Google Scholar 

  5. Pavan, M. A. & Bingham, F. T. Soil Sci. Soc. Am. J. 46, 993–997 (1982).

    Article  CAS  ADS  Google Scholar 

  6. Cronan, C. S. & Schofield, C. L. Science 204, 304–306 (1979).

    Article  CAS  ADS  PubMed  Google Scholar 

  7. Ulrich, B., Mayer, R. & Khanna, P. K. Soil Sci. 130, 193–199 (1980).

    Article  CAS  ADS  Google Scholar 

  8. Henriksen, A., Skogheim, O. K. & Rosseland, B. O. Vatten 2, 255–260 (1984).

    Google Scholar 

  9. Christophersen, N., Seip, H. M. & Wright, R. F. Wat. Resour. Res. 18, 977–996 (1982).

    Article  CAS  ADS  Google Scholar 

  10. Nordstrom, D. K. & Ball, J. W. Science 232, 54–56 (1986).

    Article  CAS  ADS  PubMed  Google Scholar 

  11. Bloom, P. R., McBride, M. B. & Weaver, R. M. Soil Sci. Soc. Am. J. 43, 488–493 (1979).

    Article  CAS  ADS  Google Scholar 

  12. Cronan, C. S. Oikos 34, 272–281 (1980).

    Article  CAS  Google Scholar 

  13. Driscoll, C. T., Van Breemen, N. & Mulder, J. Soil Sci. Soc. Am. J. 49, 437–444 (1985).

    Article  CAS  ADS  Google Scholar 

  14. Hooper, R. P. & Shoemaker, C. A. Science 229, 463–465 (1985).

    Article  CAS  ADS  PubMed  Google Scholar 

  15. Soil Survey Staff Soil Taxonomy. (Soil Conservation Service, USDA Washington D.C., 1981).

  16. Mattigod, S. V. & Sposito, G. Am. chem. Soc. Symp. Ser. 93, 837–856 (1979).

    CAS  Google Scholar 

  17. Nordstrom, D. K., Valentine, S. D., Ball, J. W., Plummer, L. N. & Jones, B. F. U.S.G.S. Water-Resources Investigation Report 84–4186 (1984).

  18. Johnson, N. M., Driscoll, C. T., Eaton, J. S., Likens, G. E. & McDowell, W. H. Geochim. cosmochim. Acta 45, 1421–1437 (1981).

    Article  CAS  ADS  Google Scholar 

  19. Bloom, P. R., McBride, M. B. & Chadbourne, B. Soil Sci. Soc. Am. J. 41, 1068–1073 (1977).

    Article  CAS  ADS  Google Scholar 

  20. Langmuir, D. in Adsorption from Aqueous Solutions (ed. Tewai, P. H.) 1–18 (Plenum, New York, 1981).

    Book  Google Scholar 

  21. Hargrove, W. L. & Thomas, G. W. Soil Sci. Soc. Am. J. 48, 1458–1460 (1984).

    Article  CAS  ADS  Google Scholar 

  22. Driscoll, C. T. Int. J. envir. analyt. Chem. 16, 267–283 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cronan, C., Walker, W. & Bloom, P. Predicting aqueous aluminium concentrations in natural waters. Nature 324, 140–143 (1986). https://doi.org/10.1038/324140a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/324140a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing