Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Searching potential energy surfaces by simulated annealing

A Corrigendum to this article was published on 22 January 1987

Abstract

Many problems in physics1, chemistry, biology2 and mathematics3 involve the determination of the absolute minimum of a certain multidimensional function. In most cases of practical interest this is a complicated matter, owing to the presence of local minima, and even more so because the number of local minima often increases exponentially with the problem size. Standard techniques apply local optimizers to many random initial configurations, but soon become intractable as the dimensionality increases. Here I show how the simulated annealing method can be used to guide a search towards the absolute minimum. The method is illustrated on a problem recently discussed in this journal, namely the minimum-energy configuration of equal charges confined to a sphere. This problem, although easy to visualize, can be used to simulate much of the complexity of the above problems by considering a large number of particles. In this limit several minima have been found that have previously been missed by other authors using classical techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hoare, M. R. & McInnes, J. Adv. Phys. 32, 791–821 (1983).

    Article  CAS  ADS  Google Scholar 

  2. Furois-Corbin, S. & Pullman, A. Chem. Phys. Lett. 123, 305–310 (1986).

    Article  CAS  ADS  Google Scholar 

  3. Clare, B. W. & Kepert, B. L. Proc. R. Soc. A405, 329–344 1986).

    ADS  Google Scholar 

  4. Powell, M. J. D. in Nonlinear Optimization 1981 (Academic, New York, 1982).

    Google Scholar 

  5. Vanderbilt, D. & Louie, S. G. J. comp. Phys. 56, 259–271 (1984).

    Article  ADS  Google Scholar 

  6. Wille, L. T. & Vennik, J. J. Phys. A18, L1113–L1117 (1985); J. Phys. A19, 1983 (1986).

    ADS  Google Scholar 

  7. Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Science 220, 671–680 (1983).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  8. Wille, L. T. CCP5 Inform. Q. 20, 19–31 (Daresbury Laboratory).

  9. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. & Teller, E. J. chem. Phys. 21, 1087–1092 (1953).

    Article  CAS  ADS  Google Scholar 

  10. Berezin, A. A. Nature 315, 104 (1985).

    Article  ADS  Google Scholar 

  11. MacGowan, D. Nature 315, 635 (1985).

    Article  ADS  Google Scholar 

  12. Nityanada, R. Nature 316, 301 (1985).

    Article  ADS  Google Scholar 

  13. Cormack, A. M. Nature 316, 301–302 (1985).

    Article  ADS  Google Scholar 

  14. Queen, N. M. Nature 317, 208 (1985).

    Article  ADS  Google Scholar 

  15. Aspden, H. Nature 319, 8 (1986).

    Article  ADS  Google Scholar 

  16. Callen, M. G., Kiang, D. & Tindall, D. A. Nature 319, 454 (1986).

    ADS  Google Scholar 

  17. Munera, H. A. Nature 320, 597–600 (1986).

    Article  ADS  Google Scholar 

  18. Whyte, L. L. Am. math. Mthly 59, 606–611 (1952).

    Article  Google Scholar 

  19. Cohn, H. Math. Tab. natn. Res. Coun. Wash. 10, 117–120 (1956).

    Google Scholar 

  20. Goldberg, M. Maths Comput. 23, 785–876 (1969).

    Article  Google Scholar 

  21. Melnyk, T. W., Knop, O. & Smith, W. R. Can. J. Chem. 55, 1745–1761 (1977).

    Article  CAS  Google Scholar 

  22. Leech, J. Math. Gaz. 41, 81–90 (1957).

    Article  MathSciNet  Google Scholar 

  23. Kellog, O. D. Foundations of Potential Theory (Springer, Berlin, 1967).

    Book  Google Scholar 

  24. Helms, L. L. Introduction to Potential Theory (Wiley, New York, 1969).

    MATH  Google Scholar 

  25. Car, R. & Parrinello, M. Phys. Rev. Lett. 55, 2471–2474 (1985).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wille, L. Searching potential energy surfaces by simulated annealing. Nature 324, 46–48 (1986). https://doi.org/10.1038/324046a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/324046a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing