Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evidence for a late Triassic multiple impact event on Earth

Abstract

Evidence for the collision of fragmented comets or asteroids with some of the larger (jovian) planets and their moons is now well established following the dramatic impact of the disrupted comet Shoemaker–Levy 9 with Jupiter in 1994 (ref. 1). Collisions by fragmented objects result in multiple impacts that can lead to the formation of linear crater chains, or catenae, on planetary surfaces2. Here we present evidence for a multiple impact event that occurred on Earth. Five terrestrial impact structures have been found to possess comparable ages (214 Myr), coincident with the Norian stage of the Triassic period. These craters are Rochechouart (France), Manicouagan and Saint Martin (Canada), Obolon' (Ukraine) and Red Wing (USA). When these impact structures are plotted on a tectonic reconstruction of the North American and Eurasian plates for 214 Myr before present, the three largest structures (Rochechouart, Manicouagan and Saint Martin) are co-latitudinal at 22.8° (within 1.2°, 110 km), and span 43.5° of palaeolongitude. These structures may thus represent the remains of a crater chain at least 4,462 km long. The Obolon' and Red Wing craters, on the other hand, lie on great circles of identical declination with Rochechouart and Saint Martin, respectively. We therefore suggest that the five impact structures were formed at the same time (within hours) during a multiple impact event caused by a fragmented comet or asteroid colliding with Earth.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Radiometric and biostratigraphic age data for the five impact structures plotted for the late Triassic to early Jurassic using the timescale of Gradstein etal.22.
Figure 2

References

  1. 1

    Orton, G. et al. Collision of comet Shoemaker-Levy 9 with Jupiter observed by the NASA infrared telescope facility. Science 267, 1277–1282 (1995).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Melosh, H. J. & Schenk, P. Split comets and the origin of crater chains on Ganymede and Callisto. Nature 365, 731–733 (1993).

    ADS  Article  Google Scholar 

  3. 3

    Grieve, R. A. F., Rupert, J., Smith, J. & Therriault, A. The record of terrestrial impact cratering. GSA Today 5, 189–196 (1995).

    Google Scholar 

  4. 4

    Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 1095–1108 (1980).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Hildebrand, A. R. et al. Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yukatán Peninsula. Geology 19, 867–871 (1991).

    ADS  Article  Google Scholar 

  6. 6

    Sharpton, V. L. & Ward, P. E. (eds) Global catastrophes in earth history: an interdisciplinary conference on impacts, volcanism and mass mortality. Spec. Pap. Geol. Soc. Am. 247 (1990).

  7. 7

    Lambert, P. The Rochechouart crater: shock zoning study. Earth Planet. Sci. Lett. 35, 258–268 (1977).

    ADS  Article  Google Scholar 

  8. 8

    Lambert, P. La structure d'impact de météorite géante de Rochechouart.Thesis, Univ. Paris-Sud((1974)).

    Google Scholar 

  9. 9

    Reimold, W. U. & Oskierski, W. in Research in Terrestrial Impact Structures (ed. Pohl, J.) 94–114 (Vieweg, Braunschweig/Weisbaden, Germany, (1987)).

    Book  Google Scholar 

  10. 10

    Kelley, S. P. & Spray, J. G. Alate Triassic age for the Rochechouart impact structure, France. Meteorit. Planet. Sci. 32, 629–636 (1997).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Dworak, U. Stoßwellenmetamorphose des Anorthosits vom Manicouagan Krater, Québec, Canada. Contrib. Mineral. Petrol. 24, 306–347 (1969).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Hodych, J. P. & Dunning, G. R. Did the Manicouagan impact trigger end-of-Triassic mass extinction? Geology 20, 51–54 (1992).

    ADS  CAS  Article  Google Scholar 

  13. 13

    McCabe, H. R. & Bannatyne, B. B. Lake St. Martin cryptoexplosion crater and geology of surrounding area. Geol. Surv. Manitoba Geol. Pap. 3/70 ((1970)).

  14. 14

    Reimold, W. U., Barr, J. M., Grieve, R. A. F. & Durrheim, R. J. Geochemistry of the melt and country rocks of the Lake St. Martin impact structure, Manitoba, Canada. Geochim. Cosmochim. Acta 54, 2093–2111 (1990).

    ADS  Article  Google Scholar 

  15. 15

    Masaitis, V. L., Danilin, A. N., Karpov, G. M. & Raykhlin, A. I. Karla, Obolon' and Rotmisrovka astroblemes in the European part of the U.S.S.R. Dokl. Akad. Nauk SSSR 230, 174–177 (1976).

    Google Scholar 

  16. 16

    Gurov, Y. P., Val'ter, A. A. & Rakitskaya, R. B. Coesite in rocks of meteorite explosion craters on the Ukrainian shield. Int. Geol. Rev. 22, 329–332 (1978).

    Article  Google Scholar 

  17. 17

    Gurov, Y. P., Gurova, E. P. & Rakitskaya, R. B. Impact diamonds in the craters of the Ukrainian shield. Meteoritics 30, 515–516 (1995).

    ADS  Google Scholar 

  18. 18

    Masaitis, V. L. et al. The Geology of Astroblemes (Nedra Press, Leningrad, (1980)).

    Google Scholar 

  19. 19

    Grieve, R. A. F. & Masaitis, V. L. The economic potential of terrestrial impact craters. Econ. Geol. 36, 105–151 (1994).

    Google Scholar 

  20. 20

    Gerhard, L. C., Anderson, S. B., Lefever, J. A. & Carlson, C. G. Geological development, origin, and energy mineral resources of Williston Basin, North Dakota. Am. Assoc. Petrol. Geol. Bull. 66, 989–1020 (1982).

    Google Scholar 

  21. 21

    Melosh, H. J. Impact Cratering: A Geologic Process (Oxford Univ. Press, (1989)).

    Google Scholar 

  22. 22

    Gradstein, F. M. et al. AMesozoic time scale. J. Geophys. Res. 99, 24051–24074 (1994).

    ADS  Article  Google Scholar 

  23. 23

    Ziegler, A. M. et al. in The Tectonic evolution of Asia (eds Yin, A. & Harrison, T. M.) 371–400 (Cambridge Univ. Press, (1996)).

    Google Scholar 

  24. 24

    Hammel, H. B. et al. HST imaging of atmospheric phenomena created by the impact of comet Shoemaker-Levy 9. Science 267, 1288–1296 (1995).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Weaver, H. A. et al. The Hubble Space Telescope (HST) observing campaign on comet Shoemaker-Levy 9. Science 267, 1282–1288 (1995).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Palme, H. Identification of projectiles of large terrestrial impact craters and some implications for the interpretation of Ir-rich Cretaceous/Tertiary boundary layers. Geol. Soc. Am. Spec. Pap. 190, 223–233 (1982).

    CAS  Google Scholar 

  27. 27

    Jannsens, M. J., Hertogen, J., Takahiashi, H., Anders, E. & Lambert, P. Rochechouart impact crater: identification of projectile. J. Geophys. Res. 82, 750–758 (1977).

    ADS  Article  Google Scholar 

  28. 28

    Horn, N. P. & Goresy, A. E. The Rochechouart crater in France: stony and not iron meteorite? Lunar Planet. Sci. XI, 468–470 (1980).

    ADS  Google Scholar 

  29. 29

    McClaren, D. J. & Goodfellow, W. D. Geological and biological consequences of giant impacts. Annu. Rev. Earth Planet. Sci. 18, 123–171 (1990).

    ADS  Article  Google Scholar 

  30. 30

    Hut, P. et al. Comet showers as a cause of mass extinctions. Nature 329, 118–126 (1987).

    ADS  Article  Google Scholar 

  31. 31

    Hallam, A. in Global Events and Event Stratigraphy (ed. Walliser, O. H.) 265–283 (Springer, New York, (1996)).

    Book  Google Scholar 

  32. 32

    Bice, D. M., Newton, C. R., McCauley, S., Reiners, P. W. & McRoberts, C. A. Shocked quartz at the Triassic/Jurassic boundary in Italy. Science 259, 443–446 (1992).

    ADS  Article  Google Scholar 

  33. 33

    Benton, M. J. More than one event in the late Triassic mass extinction. Nature 321, 857–861 (1986).

    ADS  Article  Google Scholar 

  34. 34

    Hallam, A. & Wignall, P. B. Mass Extinctions and their Aftermath (Oxford Univ. Press, (1997)).

    Google Scholar 

  35. 35

    Love, S. G., Bottke, W. F. & Richardson, D. C. Alternative formation mechanisms for terrestrial crater chains. Lunar. Planet. Sci. XXVIII, 837–838 (1997).

    Google Scholar 

  36. 36

    Bottke, W. F. & Melosh, H. J. Formation of asteroid satellites and doublet craters by planetary tidal forces. Nature 381, 51–53 (1996).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank M. Benton and J. Melosh for discussions and reviews. This work was supported by NSERC (Canada) and the Open University (UK) grants to J.G.S. and S.P.K., respectively. D.B.R. acknowledges industrial support for the Palaeogeographic Atlas Project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to John G. Spray.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Spray, J., Kelley, S. & Rowley, D. Evidence for a late Triassic multiple impact event on Earth. Nature 392, 171–173 (1998). https://doi.org/10.1038/32397

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing