Letter | Published:

Icosahedral symmetry carbon cage molecules

Abstract

Graphite, when vaporized by laser irradiation, produces a very stable cluster of 60 carbon atoms which, it has been suggested, takes the uniquely elegant form of one of the archimedian semiregular polyhedra—the truncated icosahedron1,2. In considering the possibility of other structures of especial stability, we are led by a sequence of fairly general arguments to consider a relatively restricted family of high-symmetry cage structures, which correspond to novel convex polyhedra of icosahedral symmetry. Considering each of the smaller (computationally accessable) species in the family we predict here that C20 is unstable; C80 and C140 have moderate resonance energies but are open shell; and C60, C180 and C240 are closed shell especially stable forms. The latter two are possible stable carbon cages not yet experimentally characterized.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. Nature 121, 33–37 (1985).

  2. 2

    Liu, Y. et al. Chem. phys. Lett. 126, 215–217 (1986).

  3. 3

    Pitzer, K. S. & Clementi, E. J. Am. chem. Soc. 81, 4477 (1959).

  4. 4

    Ewing, D. W. & Pfeiffer, G. V. Chem. phys. Lett. 86, 365 (1982).

  5. 5

    Grunbaum, B. Convex Polytopes Ch. 13 (Interscience, New York, 1967).

  6. 6

    Rohlfing, E. A., Cox, D. M. & Kaldor, A. J. chem. Phys. 81, 3322–3330 (1984).

  7. 7

    Bloomfeld, L. A., Geusic, E. M., Freeman, R. R. & Brown, W. L. Chem. phys. Lett. 121, 33–37 (1985).

  8. 8

    Grunbaum, B. & Motzkin, T. S. Can. J. Math. 15, 744–751 (1963).

  9. 9

    Caspar, D. L. D. & Klug, A. Cold Spring Harbor Symp. on Quantitative Biology 27, 1–24 (1962).

  10. 10

    Johnson, N. W. Can. J. Math. 18, 169–200 (1966).

  11. 11

    Klug, A. & Finch, J. T. J. molec. Biol. 11, 403–423 (1965).

  12. 12

    Marlin, W. (ed.) The Artifacts of R. Buckminster Fuller—A Comprehensive Collection of His Designs and Drawings (Garland, New York, 1984).

  13. 13

    Mackey, A. L. Acta crystallogr. 15, 916 (1962).

  14. 14

    Iijima, S. & Ichihashi, T. Phys. Rev. Lett. 56, 616–619 (1986).

  15. 15

    Teo, B. K. & Sloane, N. J. A. Inorg. Chem. 24, 4545–4558 (1985).

  16. 16

    Hess, B. A. & Schaad, L. J. J. Am. chem. Soc. 93, 305–310 (1971).

  17. 17

    Herndon, W. C. J. Am. chem. Soc. 95, 2404–2406 (1973).

  18. 18

    Herndon, W. C. & Ellzey, M. L. Jr J. Am. chem. Soc. 96, 6631–6642 (1974).

  19. 19

    Randic, M. Tetrahedron 31, 1477–1481 (1975).

  20. 20

    Randic, M. & Trinajstic, N. J. Am. chem. Soc. 106, 4428–4434 (1984).

  21. 21

    Klein, D. J., Schmalz, T. G. & Hite, G. E. J. computational Chem. 7, 443–456 (1986).

  22. 22

    Haymet, A. D. J. Chem. phys. Lett. 122, 421–424 (1985).

  23. 23

    Bochvar, D. A. & Gal'pern, G. E. Doklady Akad. Nauk SSSR 209, 610–612 (1973).

  24. 24

    Haymet, A. D. J. J. Am. chem. Soc. 108, 319–321 (1986).

  25. 25

    Klein, D. J., Schmalz, T. G., Seitz, W. A. & Hite, G. E. J. Am. chem. Soc. 108, 1301 (1986).

  26. 26

    Haddon, R. C., Brus, L. E. & Raghavachari, K. Chem. phys. Lett. 125, 459–464 (1986).

  27. 27

    Disch, R. L. & Schulman, J. M. Chem. phys. Lett. 125, 465–466 (1986).

  28. 28

    Newton, M. D. & Stanton, R. E. J. Am. chem. Soc. 108, 2469–2470 (1986).

  29. 29

    Fowler, P. W. & Woolrich, J. Chem. phys. Lett. 127, 78–83 (1986).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.