Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Icosahedral symmetry carbon cage molecules

Abstract

Graphite, when vaporized by laser irradiation, produces a very stable cluster of 60 carbon atoms which, it has been suggested, takes the uniquely elegant form of one of the archimedian semiregular polyhedra—the truncated icosahedron1,2. In considering the possibility of other structures of especial stability, we are led by a sequence of fairly general arguments to consider a relatively restricted family of high-symmetry cage structures, which correspond to novel convex polyhedra of icosahedral symmetry. Considering each of the smaller (computationally accessable) species in the family we predict here that C20 is unstable; C80 and C140 have moderate resonance energies but are open shell; and C60, C180 and C240 are closed shell especially stable forms. The latter two are possible stable carbon cages not yet experimentally characterized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. Nature 121, 33–37 (1985).

    Google Scholar 

  2. Liu, Y. et al. Chem. phys. Lett. 126, 215–217 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Pitzer, K. S. & Clementi, E. J. Am. chem. Soc. 81, 4477 (1959).

    Article  CAS  Google Scholar 

  4. Ewing, D. W. & Pfeiffer, G. V. Chem. phys. Lett. 86, 365 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Grunbaum, B. Convex Polytopes Ch. 13 (Interscience, New York, 1967).

    MATH  Google Scholar 

  6. Rohlfing, E. A., Cox, D. M. & Kaldor, A. J. chem. Phys. 81, 3322–3330 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Bloomfeld, L. A., Geusic, E. M., Freeman, R. R. & Brown, W. L. Chem. phys. Lett. 121, 33–37 (1985).

    Article  ADS  Google Scholar 

  8. Grunbaum, B. & Motzkin, T. S. Can. J. Math. 15, 744–751 (1963).

    Article  Google Scholar 

  9. Caspar, D. L. D. & Klug, A. Cold Spring Harbor Symp. on Quantitative Biology 27, 1–24 (1962).

    Article  CAS  Google Scholar 

  10. Johnson, N. W. Can. J. Math. 18, 169–200 (1966).

    Article  Google Scholar 

  11. Klug, A. & Finch, J. T. J. molec. Biol. 11, 403–423 (1965).

    Article  CAS  Google Scholar 

  12. Marlin, W. (ed.) The Artifacts of R. Buckminster Fuller—A Comprehensive Collection of His Designs and Drawings (Garland, New York, 1984).

  13. Mackey, A. L. Acta crystallogr. 15, 916 (1962).

    Article  Google Scholar 

  14. Iijima, S. & Ichihashi, T. Phys. Rev. Lett. 56, 616–619 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Teo, B. K. & Sloane, N. J. A. Inorg. Chem. 24, 4545–4558 (1985).

    Article  CAS  Google Scholar 

  16. Hess, B. A. & Schaad, L. J. J. Am. chem. Soc. 93, 305–310 (1971).

    Article  CAS  Google Scholar 

  17. Herndon, W. C. J. Am. chem. Soc. 95, 2404–2406 (1973).

    Article  CAS  Google Scholar 

  18. Herndon, W. C. & Ellzey, M. L. Jr J. Am. chem. Soc. 96, 6631–6642 (1974).

    Article  CAS  Google Scholar 

  19. Randic, M. Tetrahedron 31, 1477–1481 (1975).

    Article  CAS  Google Scholar 

  20. Randic, M. & Trinajstic, N. J. Am. chem. Soc. 106, 4428–4434 (1984).

    Article  CAS  Google Scholar 

  21. Klein, D. J., Schmalz, T. G. & Hite, G. E. J. computational Chem. 7, 443–456 (1986).

    Article  CAS  Google Scholar 

  22. Haymet, A. D. J. Chem. phys. Lett. 122, 421–424 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Bochvar, D. A. & Gal'pern, G. E. Doklady Akad. Nauk SSSR 209, 610–612 (1973).

    CAS  Google Scholar 

  24. Haymet, A. D. J. J. Am. chem. Soc. 108, 319–321 (1986).

    Article  CAS  Google Scholar 

  25. Klein, D. J., Schmalz, T. G., Seitz, W. A. & Hite, G. E. J. Am. chem. Soc. 108, 1301 (1986).

    Article  CAS  Google Scholar 

  26. Haddon, R. C., Brus, L. E. & Raghavachari, K. Chem. phys. Lett. 125, 459–464 (1986).

    Article  ADS  CAS  Google Scholar 

  27. Disch, R. L. & Schulman, J. M. Chem. phys. Lett. 125, 465–466 (1986).

    Article  ADS  CAS  Google Scholar 

  28. Newton, M. D. & Stanton, R. E. J. Am. chem. Soc. 108, 2469–2470 (1986).

    Article  CAS  Google Scholar 

  29. Fowler, P. W. & Woolrich, J. Chem. phys. Lett. 127, 78–83 (1986).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, D., Seitz, W. & Schmalz, T. Icosahedral symmetry carbon cage molecules. Nature 323, 703–706 (1986). https://doi.org/10.1038/323703a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/323703a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing