Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cumulative effect of intragenic amino-acid replacements on the thermostability of a protein

Abstract

The marginal net stability of a folded protein is thought to depend on a small difference between large, compensating individual forces. Therefore, the net free energy of stabilization of proteins is unexpectedly small (10 kcal mol−1)1. The contribution of individual forces such as hydrogen bonds and salt bridges to the stabilization is evaluated as 1–3 kcal mol−1 (refs 1,2), and several additional forces are thought to be sufficient to account for the extra thermostability of thermophilic proteins2–5. The native conformation of a protein is determined by the total number of interatomic interactions and hence by the amino-acid sequence6. If the few amino-acid residues that individually contribute to the stabilization could be implemented concurrently into the sequence, the multiple replacement would enhance the overall stability of the protein molecule. Here we report evidence to support this argument. Thermal inactivation kinetics and proteolytic resistance for mutants of a kanamycin nucleotidyltransferase reveal that a few intragenic amino-acid replacements stabilize the protein cumulatively. Our experiments not only demonstrate the feasiblity of elevating the thermostability of a protein but also lead to better understanding of the forces that are responsible for protein stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Creighton, T. E. Proteins: Structure and Molecular Properties Ch. 7 (Freeman, New York, 1983).

    Google Scholar 

  2. Perutz, M. F. Science 201, 1187–1191 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Pertuz, M. F. & Raidt, H. Nature 255, 256–259 (1975).

    Article  ADS  Google Scholar 

  4. Yutani, K., Ogasahara, K., Sugino, Y. & Matsushiro, A. Nature 267, 274–275 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Hawkes, R., Grütter, M. G. & Schellman, J. J. molec. Biol. 175, 195–212 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Anfinsen, C. B. Science 181, 223–230 (1973).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Sadaie, Y., Burtis, K. C. & Doi, R. H. J. Bact. 141, 1178–1182 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Matsumura, M., Katakura, Y., Imanaka, T. & Aiba, S. J. Bact. 160, 413–420 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Matsumura, M. & Aiba, S. J. biol. Chem. 260, 15298–15303 (1985).

    CAS  PubMed  Google Scholar 

  10. Matsumura, M., Kataoka, S. & Aiba, S. Molec. gen. Genet, (in the press).

  11. Zoller, M. J. & Smith, M. Meth. Enzym. 100, 468–500 (1983).

    Article  CAS  PubMed  Google Scholar 

  12. Yanisch-Perron, C., Vieira, J. & Messing, J. Gene 33, 103–119 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Heinrikson, R. L. Meth. Enzym. 47, 175–189 (1977).

    Article  CAS  PubMed  Google Scholar 

  14. Brock, T. D. Science 230, 132–138 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Grütter, M. G., Hawkes, R. B. & Matthews, B. W. Nature 277, 667–669 (1979).

    Article  ADS  PubMed  Google Scholar 

  16. Ulmer, K. M. Science 219, 666–671 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Alber, T. & Wozniak, J. A. Proc. natn. Acad. Sci. U.S.A. 82, 747–750 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Sanger, F., Coulson, A. R., Barrell, B. G., Smith, A. J. H. & Roe, B. A. J. molec. Biol. 143, 161–178 (1980).

    Article  CAS  PubMed  Google Scholar 

  19. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  20. Messing, J. Meth. Enzym. 101, 20–78 (1983).

    Article  CAS  PubMed  Google Scholar 

  21. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumura, M., Yasumura, S. & Aiba, S. Cumulative effect of intragenic amino-acid replacements on the thermostability of a protein. Nature 323, 356–358 (1986). https://doi.org/10.1038/323356a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/323356a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing