Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Aqueous aluminium chemistry response to episodic increases in discharge

Abstract

Increased aluminium mobilization and transport from edaphic reservoirs to surface waters have been documented as major effects of atmospheric deposition of mineral acids1,2. High concentrations of hydrogen ions and aqueous aluminium in stream water tend to occur at times of heavy runoff3–6. Some forms of inorganic monomeric aluminium are highly toxic to freshwater biota. It is therefore important to know more about changes in aqueous aluminium speciation and associated chemical parameters during high–discharge episodes. We present here recent data from the Birkenes catchment in southernmost Norway, demonstrating that short-term fluctuations in inorganic aluminium in stream water cannot be explained by assuming equilibrium with a single mineral such as gibbsite (Al(OH)3). In some conditions [Al3+] may decrease or remain constant with decreasing pH, thus violating the gibbsite equilibrium assumption. Aluminium in stream water is contrasted with data from soil lysimeters which showed higher pH and concentrations of inorganic aluminium. Lysimeter concentrations were less variable with hydrological conditions. To explain the observed patterns of aluminium fraction concentrations and pH, we postulate changes in flow paths with discharge and/or kinetically controlled dissolution of aluminium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cronan, C. S. & Schofield, C. L. Science 204, 304–306 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Dickson, W. in Ecological Impacts of Acid Precipitation (eds Drablös, D. & Tollan, A.) 75–83 (SNSF project, Norwegian Institute for Water Research, Oslo, 1980).

    Google Scholar 

  3. Rosenqvist, I. Th. Sci. tot. Envir. 10, 39–49 (1978).

    Article  CAS  Google Scholar 

  4. Henriksen, A., Skogheim, O. K. & Rosseland, B. G. Vatten 40, 255–260 (1984).

    CAS  Google Scholar 

  5. Driscoll, C. T., Baker, J. P., Bisogni, J. J. & Schofield, C. L. Nature 284, 161–164 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Christophersen, N., Seip, H. M. & Wright, R. F. Wat. Resour. Res. 18, 977–996 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Christophersen, N. & Wright, R. F. Wat. Resour. Res. 17, 377–389 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Cronan, C. S. ALBIOS a Rep. (University of Maine, Orono, 1984).

  9. Barnes, R. B. Chem. Geol. 15, 177–191 (1975).

    Article  ADS  CAS  Google Scholar 

  10. Driscoll, C. T. Int. J. Envir. analyt. Chem. 16, 267–283 (1984).

    Article  CAS  Google Scholar 

  11. Westall, J. C., Zachary, J. L. & Morel, F. M. M. R. M. Parsons Lab. (MIT) tech. Not. No. 18, 1976).

  12. Nordstrom, D. K., Valentine, S. D., Ball, J. W., Plummer, L. N. & Jones, B. F. U.S. geol. Surv. Wat. Res. Invest. Rep. No. 84–4186 (1984).

  13. Johannessen, M. & Henriksen, A. Wat. Resour. Res. 14, 615–619 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Johnson, N. M., Driscoll, C. T., Eaton, J. S., Likens, G. E. & McDowell, W. H. Geochim. cosmochim. Acta 45, 1421–1437 (1981).

    Article  ADS  CAS  Google Scholar 

  15. Reuss, J. O. Ecol Model 11, 15–38 (1980).

    Article  CAS  Google Scholar 

  16. Gherini, S. A. et al. Water Air Soil Pollut. 26, 425–459 (1985).

    CAS  Google Scholar 

  17. Cosby, B. J., Hornberger, G. M., Galloway, J. N. & Wright, R. F. Wat. Resour. Res. 21, 51–63 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Hooper, R. P. & Shoemaker, C. A. Science 229, 463–465 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Sullivan, T. J., Muniz, I. P. & Seip, H. M. Int. J. Envir. Analyt. Chem. 26, 61–75 (1986).

    Article  CAS  Google Scholar 

  20. Nordstrom, D. K. & Ball, J. W. Science 232, 54–56 (1986).

    Article  ADS  CAS  Google Scholar 

  21. Nilsson, S. I. & Bergkvist, B. Water Air Soil Pollut. 20, 311–330 (1983).

    ADS  CAS  Google Scholar 

  22. Christophersen, N., Kjaernsrød, S. & Rodhe, A. in Hydrological and Hydrogeochemical Mechanisms and Model Approaches to the Acidification of Ecological Systems (ed. Johansson, I) 29–40 NHP Rep. 10, NFR's Committee for Hydrology, Stockholm (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullivan, T., Christophersen, N., Muniz, I. et al. Aqueous aluminium chemistry response to episodic increases in discharge. Nature 323, 324–327 (1986). https://doi.org/10.1038/323324a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/323324a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing