Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rossby autosoliton and stationary model of the jovian Great Red Spot

Abstract

A theory proposed about 10 years ago claimed that the jovian Great Red Spot (GRS) was a solitary wave vortex (Rossby soliton) kept stationary by counter–streaming zonal winds. We have attempted to verify this soliton theory experimentally. The jovian atmosphere is modelled by a rotating thin parabolic layer of fluid (shallow water) with a free surface in which counter-streaming (zonal) flows are excited mechanically. We have found that instability of these flows can generate a Rossby autosoliton, that is, an undamped stationary solitary vortex which is alone on the perimeter of the system. This vortex rotates around its axis in the anticyclonic sense and drifts in the opposite direction to the global rotation of the system. As the observed Rossby soliton can be considered as a physical analogue (or rather as a stationary physical model) of a natural vortex such as the GRS, the results of our experiments can be considered to support the soliton theory of the GRS. We have compared the soliton model with another physical model of the GRS based on thermoconvection in rotating deep water under the action of a transverse non-monotonic temperature gradient. A new model based on a synthesis of these ideas is urgently required.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Antipov, S. V., Nezlin, M. V., Snezhkin, E. N. & Trubnikov, A. S. JETP Lett. 33, 351–355 (1981); Soviet Phys., JETP 55, 85–95 (1982).

    ADS  Google Scholar 

  2. Nezlin, M. V., Snezhkin, E. N. & Trubnikov, A. S. JETP Lett. 36, 234–238 (1982).

    ADS  Google Scholar 

  3. Antipov, S. V., Nezlin, M. V., Rodionov, V. K., Snezhkin, E. N. & Trubnikov, A. S. Soviet Phys. JETP 57, 786–797 (1983); JETP Lett. 37, 378–381 (1983).

    Google Scholar 

  4. Petviashvili, V. I. Pis'ma Zh. eksp. teor. Fiz. 32, 632–635 (1980).

    ADS  Google Scholar 

  5. Maxworthy, T. & Redekopp, L. G. Icarus 29, 261–271 (1976); Science 210,1350–1352 (1980).

    Article  ADS  Google Scholar 

  6. Sagdeev, R. Z., Shapiro, V. D. & Shevchenko, V. I. Pis'ma Astr. Zh. 7, 505–509 (1982).

    ADS  Google Scholar 

  7. Nezlin, M. V. Soviet Astr. Lett. 10, 221–226 (1984); JETP Lett. 34, 77–80 (1981).

    ADS  Google Scholar 

  8. Rhines, P. Ann. Rev. Fluid Mech. 11, 401–441 (1979).

    Article  ADS  Google Scholar 

  9. Hasegava, A. J. phys. Soc. Jap. 52, 1930–1934 (1983).

    Article  ADS  Google Scholar 

  10. Williams, G. P. J. atmos. Sci. 35, 1399–1426 (1978); 36, 932–968 (1979).

    Article  ADS  Google Scholar 

  11. Williams, G. P. & Yamagata, T. J. atmos. Sci. 41, 453–478 (1984).

    Article  ADS  Google Scholar 

  12. Mitchell, J. K., Beebe, R. F., Ingersoll, A. P. & Garnean, G. W. J. geophys. Res. 86A, 8751–8757 (1981).

    Article  ADS  Google Scholar 

  13. Hatzes, A., Wenkert, D. D., Ingersoll, A. P. & Danielson, G. E. J. geophys. Res. 86A, 8745–8749 (1981).

    Article  ADS  Google Scholar 

  14. Hide, R. & Titman, C. W. J. Fluid. Mech. 29, 39–60 (1967).

    Article  ADS  Google Scholar 

  15. Niino, H. & Misawa, N. J. atmos. Sci. 41, 1992–2011 (1984).

    Article  ADS  Google Scholar 

  16. Read, P. L. & Hide, R. Nature 302, 126–129 (1983); 308 45-48 (1984).

    Article  ADS  Google Scholar 

  17. Ingersoll, A. P. & Cuong, P. G. J. atmos. Sci. 38, 2067–2076 (1981).

    Google Scholar 

  18. Alisson, M. & Stone, P. H. Icarus 54, 296–308 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antipov, S., Nezlin, M., Snezhkin, E. et al. Rossby autosoliton and stationary model of the jovian Great Red Spot. Nature 323, 238–240 (1986). https://doi.org/10.1038/323238a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/323238a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing