Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

In vitro synthesized bacterial outer membrane protein is integrated into bacterial inner membranes but translocated across microsomal membranes

Abstract

The LamB protein is an integral membrane protein of the outer membrane of Escherichia coli. We have now found that, when synthesized in an E. coli cell-free translation system supplemented with inverted vesicles derived from the E. coli inner membrane, LamB protein is integrated into the vesicle membrane as assayed by its resistance to extraction at alkaline pH. These data suggest that the inner membrane is the primary site for integration of LamB protein prior to subsequent sorting to the outer membrane. When synthesized in a wheat germ cell-free translation system supplemented with canine microsomal membranes, LamB protein is glycosylated at one or two cryptic sites, and surprisingly, it is translocated across instead of being integrated into the vesicle membrane. We suggest that the translocation machinery of the microsomal membrane, although able to recognize the signal sequences) of LamB, is unable to recognize its stop-transfer sequences), thereby yielding translocation instead of integration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Blobel, G. Proc. natn. Acad. Sci. U.S.A. 77, 1496–1500 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Nikaido, H. & Vaara, M. Microbiol. Rev. 49, 1–32 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Rosenbusch, J. P. J. biol. Chem. 249, 8019–8029 (1974).

    CAS  PubMed  Google Scholar 

  4. Ishii, J. N., Okajima, Y. & Nakee, T. FEBS Lett. 134, 217–220 (1981).

    Article  CAS  Google Scholar 

  5. Palva, E. T. & Westermann, P. FEBS Lett. 99, 77–80 (1979).

    Article  CAS  Google Scholar 

  6. Nakae, T. & Ishii, J. N. Annls Microbiol. Inst. Pasteur, Paris 133A, 21–25 (1982).

    CAS  Google Scholar 

  7. Dorset, D. L., Engel, A., Massalski, A. & Rosenbusch, J. P. Biophys. J. 45, 128–,129 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Boehler-Kohler, B. A., Boos, W., Dieterle, R. & Benz, R. J. Bact. 138, 33–39 (1979).

    CAS  PubMed  Google Scholar 

  9. Schindler, H. & Rosenbusch, J. P. Proc. natn. Acad. Sci. U.S.A. 78, 2302–2306 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Luckey, M. & Nikaido, H. Proc. natn. Acad. Sci. U.S.A. 77, 167–171 (1980).

    Article  ADS  CAS  Google Scholar 

  11. Ferenci, T. & Boos, W. J. J. supramolec. Struc. 13, 101–116 (1980).

    Article  CAS  Google Scholar 

  12. Neuhaus, J. M., Schindler, H. & Rosenbusch, J. P. EMBO J. 2, 1987–1991 (1983).

    Article  CAS  Google Scholar 

  13. Wandersman, C., Schwartz, M. & Ferenci, T. J. Bact. 140, 1–13 (1977).

    Google Scholar 

  14. Bavoil, P. & Nikaido, H. J. biol. Chem. 256, 11385–11388 (1981).

    CAS  PubMed  Google Scholar 

  15. Randall‐Hazelbauer, L. & Schwartz, M. J. Bact. 116, 1436–1446 (1973).

    PubMed  Google Scholar 

  16. Clement, J. M. & Hofnung, M. Cell 27, 507–514 (1981).

    Article  CAS  Google Scholar 

  17. Müller, M. & Blobel, G. Proc. natn. Acad. Sci. U.S.A. 81, 7421–7425 (1984).

    Article  ADS  Google Scholar 

  18. Marchal, C., Perrin, D., Hedgpeth, J. & Hofnung, M. Proc. natn. Acad. Sci. U.S.A 77, 1491–1495 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Krieg, P. A. & Melton, D. A. Nucleic Acids Res. 12, 7057–7070 (1984).

    Article  CAS  Google Scholar 

  20. Schnaitman, C. A. J. Bact. 104, 890–901 (1970).

    CAS  PubMed  Google Scholar 

  21. Steck, T. L. & Yu, J. J. supramolec. Struct. 1, 220–248 (1973).

    Article  CAS  Google Scholar 

  22. Fujiki, Y., Hubbard, A. L., Fowler, S. & Lazarow, P. B. J. Cell Biol. 93, 97–102 (1982).

    Article  CAS  Google Scholar 

  23. Gilmore, R. & Blobel, G. Cell 42, 497–505 (1985).

    Article  CAS  Google Scholar 

  24. Smit, J. & Nikaido, H. J. Bact. 135, 687–702 (1978).

    CAS  PubMed  Google Scholar 

  25. Bayer, M. H. in Membrane Biogenesis (ed. Tzagaloff, A.) 383–437 (Plenum, New York, 1975).

    Google Scholar 

  26. Bayer, M. H., Costello, G. P. & Bayer, M. E. J. Bact. 149, 758–767 (1982).

    CAS  PubMed  Google Scholar 

  27. Ishidate, K. et al. 261, 428–443 (1986).

  28. Pugsley, A. P. & Schwartz, M. FEMS Microbiol. Rev. 32, 3–38 (1985).

    Article  CAS  Google Scholar 

  29. Erickson, A. H. & Blobel, G. Meth. Enzym. 96, 38–49 (1983).

    Article  CAS  Google Scholar 

  30. Walter, P. & Blobel, G. Proc. natn. Acad. Sci U.S.A. 77, 7112–7116 (1980).

    Article  ADS  CAS  Google Scholar 

  31. Müller, M., Ibrahimi, I., Chang, C. N., Walter, P. & Blobel, G. J. biol. Chem. 257, 11860–11863 (1982).

    PubMed  Google Scholar 

  32. Walter, P. & Blobel, G. Meth. Enzym. 96, 682–691 (1983).

    Article  CAS  Google Scholar 

  33. Walter, P. & Blobel, G. Meth. Enzym. 96, 84–93 (1983).

    Article  CAS  Google Scholar 

  34. Walter, P. & Blobel, G. J. Cell Biol. 91, 557–561 (1981).

    Article  CAS  Google Scholar 

  35. Erickson, A. H. & Blobel, G. J. biol. Chem. 254, 11771–11774 (1979).

    CAS  Google Scholar 

  36. Friedlander, M. & Blobel, G. Nature 318, 338–343 (1985).

    Article  ADS  CAS  Google Scholar 

  37. Van Heijne, G. & Blomberg, C. Eur. J. Biochem. 97, 175–181 (1979).

    Article  Google Scholar 

  38. Engelman, D. M. & Steitz, T. A. Cell 23, 411–422 (1981).

    Article  CAS  Google Scholar 

  39. Mizushima, S. & Yamada, H. Biochim. biophys. Acta 375, 44–53 (1975).

    Article  CAS  Google Scholar 

  40. Dewey, M. M. & Barr, B. Curr. Topics Membrane Transport 1, 6 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, M., Hunt, J. & Blobel, G. In vitro synthesized bacterial outer membrane protein is integrated into bacterial inner membranes but translocated across microsomal membranes. Nature 323, 71–73 (1986). https://doi.org/10.1038/323071a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/323071a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing