Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The tight junction does not allow lipid molecules to diffuse from one epithelial cell to the next

Abstract

The tight junction (zonula occludens) links epithelial cells into a monolayer by forming a continuous belt of sealing contacts around the apex of each cell. They appear in thin sections as if they were ‘fusions’ between the apposed plasma membranes1 and in freeze-fracture replicas as patterns of complementary strands and furrows2. These images have led to the proposal that the core of the tight junction is formed by a hexagonal cylinder of lipids3,4. In this model, the cytoplasmic leaflet of the apical and basolateral plasma membrane domains would be continuous, whereas the exoplasmic leaflets of the two plasma membrane domains of the same cell would be separated at the tight junction and are instead predicted to be continuous between the plasma membranes of neighbouring cells. We demonstrate here that this prediction does not hold true. An endogenous glycolipid (Forssman antigen), present in the exoplasmic leaflet of the apical membrane of MDCK strain II cells5,6, is unable to pass to MDCK strain I cells (which lack this glycolipid) under conditions where these cells are connected by tight junctions. In addition, fluorescent lipids which have been fused into the plasma membrane7,8 of one MDCK cell do not diffuse to neighbouring cells while the tight junctions between the cells are intact.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Farquhar, M. G. & Palade, G. E. J. Cell Biol. 17, 375–412 (1963).

    Article  CAS  Google Scholar 

  2. Goodenough, D. A. & Revel, J. P. J. Cell Biol. 45, 272–290 (1970).

    Article  CAS  Google Scholar 

  3. Kachar, B. & Reese, T. S. Nature 296, 464–466 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Pinto da Silva, P. & Kachar, B. Cell 28, 441–450 (1982).

    Article  CAS  Google Scholar 

  5. Hansson, G. C., Simons, K. & & van Meer, G. EMBO J. 5, 483–489 (1986).

    Article  CAS  Google Scholar 

  6. Nichols, G. E., Lovejoy, J. C., Borgman, C. A. & Young, W. W. Jr J. Cell Biol. 101, 64a (1985).

    Google Scholar 

  7. van Meer, G. & Simons, K. J. Cell Biol. 97, 1365–1374 (1983).

    Article  CAS  Google Scholar 

  8. van Meer, G., Davoust, J. & Simons, K. Biochemistry 24, 3593–3602 (1985).

    Article  CAS  Google Scholar 

  9. Balcarova-Ständer, J., Pfeiffer, S. E., Fuller, S. D. & Simons, K. EMBO J. 3, 2687–2694 (1984).

    Article  Google Scholar 

  10. Gumbiner, B. & Simons, K. J. Cell Biol. 102, 457–468 (1986).

    Article  CAS  Google Scholar 

  11. Sonnenberg, A. et al. J. Immun. (in the press).

  12. Struck, D. K., Hoekstra, D. & Pagano, R. E. Biochemistry 20, 4093–4099 (1981).

    Article  CAS  Google Scholar 

  13. Hoekstra, D., de Boer, T., Klappe, K. & Wilschut, J. Biochemistry 23, 5675–5681 (1984).

    Article  CAS  Google Scholar 

  14. Fuller, S., von Bonsdorff, C.-H. & Simons, K. Cell 38, 65–77 (1984).

    Article  CAS  Google Scholar 

  15. Cereijido, M., Robbins, E. S., Dolan, W. J., Rotunno, C. A. & Sabatini, D. D. J. Cell Biol. 77, 853–880 (1978).

    Article  CAS  Google Scholar 

  16. van Meer, G. & Simons, K. EMBO J. 5, 1455–1464 (1986).

    Article  CAS  Google Scholar 

  17. Dragsten, P. R., Blumenthal, R. & Handler, J. S. Nature 294, 718–722 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Stevenson, B. R. & Goodenough, D. A. J. Cell Biol. 98, 1209–1221 (1984).

    Article  CAS  Google Scholar 

  19. Szoka, F. Jr & Papahadjopoulos, D. Proc. natn. Acad. Sci. U.S.A. 75, 4194–4198 (1978).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Meer, G., Gumbiner, B. & Simons, K. The tight junction does not allow lipid molecules to diffuse from one epithelial cell to the next. Nature 322, 639–641 (1986). https://doi.org/10.1038/322639a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/322639a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing