Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA


Chloroplasts contain their own autonomously replicating DNA genome. The majority of proteins present in the chloroplasts are encoded by nuclear DNA, but the rest are encoded by chloroplast DNA and synthesized by the chloroplast transcription–translation machinery1–4. Although the nucleotide sequences of many chloroplast genes from various plant species have been determined, the entire gene organization of the chloroplast genome has not yet been elucidated for any species of plants. To improve our understanding of the chloroplast gene system, we have determined the complete sequence of the chloroplast DNA from a liverwort, Marchantia polymorpha, and deduced the gene organization. As reported here the liverwort chloroplast DNA contains 121,024 base pairs (bp), consisting of a set of large inverted repeats (IRA and IRB, each of 10,058 bp) separated by a small single-copy region (SSC, 19,813 bp) and a large single-copy region (LSC, 81,095 bp). We detected 128 possible genes throughout the liverwort chloroplast genome, including coding sequences for four kinds of ribosomal RNAs, 32 species of transfer RNAs and 55 identified open reading frames (ORFs) for proteins, which are separated by short A+T-rich spacers (Fig. 1). Twenty genes (8 encoding tRNAs, 12 encoding proteins) contain introns in their coding sequences. These introns can be classified as belonging to either group I or group II, as described for mitochondria5. Interestingly, seven of the identified ORFs show high homology to unidentified reading frames (URFs) found in human mitochondria6,7.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. Bogorad, L. Genetic Engineering Vol. 1 (eds. Setlow, K. & Hollaender, A.) 181–203 (Plenum, New York, 1979).

    Book  Google Scholar 

  2. Whitfeld, P. R. & Bottomley, W. A. Rev. Pl. Physiol. 34, 279–310 (1983).

    CAS  Article  Google Scholar 

  3. Palmer, J. D. A. Rev. Genet. 19, 325–354 (1985).

    CAS  Article  Google Scholar 

  4. Herrnann, R. G. et al. in Structure and Function of Plant Genomes (eds Ciferri, O. & Dure, L.) 143–153 (Plenum, New York, 1985).

    Google Scholar 

  5. Michel, F. & Dujon, B. EMBO J. 2, 33–38 (1983).

    CAS  Article  Google Scholar 

  6. Anderson, S. et al. Nature 290, 457–465 (1981).

    ADS  CAS  Article  Google Scholar 

  7. Chomyn, A. et al. Nature 314, 592–597 (1985).

    ADS  CAS  Article  Google Scholar 

  8. Ohyama, K. et al. Molec. gen. Genet. 189, 1–9 (1983).

    CAS  Article  Google Scholar 

  9. Yamano, Y., Ohyama, K. & Komano, T. Nucleic Acids Res. 12, 4621–4624 (1984).

    CAS  Article  Google Scholar 

  10. Yamano, Y. et al. FEBS Lett. 185, 203–207 (1985).

    CAS  Article  Google Scholar 

  11. Crick, F. H. C. Scient. Am. 245(4), 55–62 (1966).

    Article  Google Scholar 

  12. Crick, F. H. C. J. molec. Biol. 19, 548–555 (1966).

    CAS  Article  Google Scholar 

  13. Ellis, R. J. A. Rev. Pl. Physiol. 32, 111–137 (1981).

    CAS  Article  Google Scholar 

  14. Wilbur, W. J. & Lipman, D. J. Proc. natn. Acad. Sci. U.S.A. 80, 726–730 (1983).

    ADS  CAS  Article  Google Scholar 

  15. Dorne, A.-M., Lescure, A.-M. & Mache, R. Pl. molec. Biol. 3, 83–90 (1984).

    CAS  Article  Google Scholar 

  16. Zurawski, G. & Zurawski, S. M. Nucleic Acids Res. 13, 4521–4526 (1985).

    CAS  Article  Google Scholar 

  17. Cerretti, D. P. et al. Nucleic Acids Res. 11, 2599–2616 (1983).

    CAS  Article  Google Scholar 

  18. Bedwell, D. et al. Nucleic Acids Res. 13, 3891–3903 (1985).

    CAS  Article  Google Scholar 

  19. Umesono, K. et al. Nucleic Acids Res. 12, 9551–9565 (1984).

    CAS  Article  Google Scholar 

  20. Fukuzawa, H. et al. FEBS Lett. 198, 11–15 (1986).

    CAS  Article  Google Scholar 

  21. Yura, T. et al. Proc. natn. Acad. Sci. U.S.A. 81, 6803–6807 (1984).

    ADS  CAS  Article  Google Scholar 

  22. Crouse, E. J., Schmitt, J. M. & Bohnert, H.-J. Pl. molec. Biol. Reptr. 3, 43–89 (1985).

    CAS  Article  Google Scholar 

  23. Montandon, P. E. & Stutz, E. Nucleic Acids Res. 11, 5877–5892 (1983).

    CAS  Article  Google Scholar 

  24. Shinozaki, K. et al. Molec. gen. Genet. 202, 1–5 (1986).

    CAS  Article  Google Scholar 

  25. Bennoun, P. Proc. natn. Acad. Sci. U.S.A. 79, 4352–4356 (1982).

    ADS  CAS  Article  Google Scholar 

  26. Yasunobu, K. T. & Tanaka, M. Meth. Enzym. 69, 228–238 (1980).

    CAS  Article  Google Scholar 

  27. Hearst, J. E. et al. Cell 40, 219–220 (1985).

    CAS  Article  Google Scholar 

  28. Widger, W. R. et al. Proc. natn. Acad. Sci. U.S.A. 81, 674–678 (1984).

    ADS  CAS  Article  Google Scholar 

  29. Higgins, C. F. et al. EMBO J. 4, 1033–1040 (1985).

    CAS  Article  Google Scholar 

  30. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    CAS  Article  Google Scholar 

  31. Sanger, F., Wicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    ADS  CAS  Article  Google Scholar 

  32. Messing, J., Crea, R. & Seeburg, P. H. Nucleic Acids Res. 9, 309–321 (1981).

    CAS  Article  Google Scholar 

  33. Yanisch-Perron, C., Vieira, J. & Messing, J. Gene 33, 103–119 (1985).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ohyama, K., Fukuzawa, H., Kohchi, T. et al. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322, 572–574 (1986).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing