Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A class of narrow-band-gap semiconducting polymers

Abstract

Scientific interest in electrically conducting polymers and conjugated polymers in general has been widespread among workers in polymer science, chemistry, condensed matter physics, materials science and related fields since the discovery of doped conductive poly acetylene1,2. Many doped conducting organic polymers with conductivity spanning the range from insulator to near-metallic 10−15–103 ohm−1cm−1) are now known1–13. Of prime importance and fundamental interest in the continuing experimental and theoretical search for new conducting, and perhaps superconducting, polymers is the achievement of small or vanishing values for the semiconductor band gap (Eg), which governs the intrinsic electronic, optical and magnetic properties of materials. Existence of a finite Eg in conjugated polymers is thought to originate principally from bond-length alternation, which is related to the Peierls instability theorem for one-dimensional metals114–17. Here I describe a novel class of conjugated polymers, containing alternating aromatic and quinonoid segments, whose members exhibit intrinsic band gaps as low as 0.75 eV, the smallest known value of Eg for an organic polymer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K. & Heeger, A. J. JCS chem. Commun., 578 (1977).

  2. Chiang, C. K. et al. Phys. Rev. Lett. 39, 1098–1101 (1977).

    Article  ADS  CAS  Google Scholar 

  3. Chien, J.C.W. Polyacetylene: Chemistry, Physics and Materials Science (Academic, Orlando, 1984).

    Google Scholar 

  4. Ivory, D. M. et al. J. chem. Phys. 71, 1506–1507 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Clarke, T. C. et al. J. Polym. Sci. Polym. Phys. 20, 117–130 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Diaz, A. F., Kanazawa, K. K. & Gardini, G. P. JCS chem. Commun., 635 (1979).

  7. Kanazawa, K.K. et al. Synth. Metals 1, 329–336 (1980).

    Article  CAS  Google Scholar 

  8. Tourillon, G. & Garnier, F. J. electroanal. Chem. 135, 173–178 (1982); 161, 407–414 (1984).

    Article  CAS  Google Scholar 

  9. Wellinghoff, S. T., Kedrowski, T., Jenekhe, S. A. & Ishida, H. J. Phys. Colloq. 44, 677–681 (1983).

    Article  Google Scholar 

  10. Jenekhe, S. A., Wellinghoff, S. T. & Deng, Z. Synth. Metals 10, 281–292 (1985).

    Article  CAS  Google Scholar 

  11. Jenekhe, S. A., Wellinghoff, S. T. & Reed, J. F. Mol. Cryst. Liq. Cryst. 105, 175–189 (1984).

    Article  CAS  Google Scholar 

  12. Greene, R. L. & Street, G. B. Science 226, 651–656 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Wudl, F., Kobayashi, M., Colaneri, N., Boysel, M. & Heeger, A. J. Mol. Cryst. Liq. Cryst. 118, 199–204 (1985).

    Article  CAS  Google Scholar 

  14. Peierls, R. E. Quantum Theory of Solids, 108 (Oxford University Press, London, 1955).

    MATH  Google Scholar 

  15. Ovchinnkov, A. A., Ukrainskii, I. I. & Krentsel, G. V. Soviet Phys. Usp. 15, 575–591 (1973).

    Article  ADS  Google Scholar 

  16. Grant, P. M. & Batra, I. P. Solid State Commun. 29, 225–229 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Simon, J. & Andre, J.-J. Molecular Semiconductors, 166–173 (Springer, New York, 1984).

    Google Scholar 

  18. Jenekhe, S. A. Macromolecules (submitted).

  19. Bredas, J. L. Mol. Cryst. Liq. Cryst. 118, 49–56 (1985).

    Article  CAS  Google Scholar 

  20. Su, W. P., Schrieffer, J. R. & Heeger, A. J. Phys. Rev. B 22, 2099–2111 (1980); Phys. Rev. Lett. 42, 1698–1701 (1979).

    Article  ADS  CAS  Google Scholar 

  21. Bredas, J. L., Themans, B., Andre, J. M., Chance, R.R. & Silbey, R. Synth. Metals 9, 265–274 (1984).

    Article  CAS  Google Scholar 

  22. Bredas, J. L., Chance, R. R. & Silbey, R. Phys. Rev. B 26, 5843–5854 (1982).

    Article  ADS  CAS  Google Scholar 

  23. Jenekhe, S. A. Macromolecules (submitted).

  24. Boudreaux, D. S. et al. Phys. Rev. B 31, 652–655 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenekhe, S. A class of narrow-band-gap semiconducting polymers. Nature 322, 345–347 (1986). https://doi.org/10.1038/322345a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/322345a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing