Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bacterial scavenging of Mn and Fe in a mid- to far-field hydrothermal particle plume

Abstract

The horizontally advected plumes which originate from buoyant hydrothermal fluid discharges and subsequently mix with entrained ambient sea water have been detected hundreds of kilometres from their vent sources by distinctive chemical hydrothermal tracers such as 3He, Mn and Fe (refs 1–6). Non-conservative plume tracers, such as Mn and Fe, undergo dynamic oxidation–precipitation reactions as the plume is advected away from the vent sources1,4,7,8. Although some of these transformations may be mediated by microbial activity9,10, hydrothermal plumes have largely escaped microbiological examination beyond tens of metres from their vent origins11,12. Microbe–metal interactions in a hydrothermal plume were specifically addressed during our recent expedition (Vent–Plume '85) to the southern Juan de Fuca Ridge (SJFR). The early results, reported here, provide strong evidence of major microbiological influence over Mn scavenging and particulate-Mn distributions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Weiss, R. F. Earth planet. Sci. Lett. 37, 257–262 (1977).

    Article  CAS  ADS  Google Scholar 

  2. Bolger, G. W., Betzer, P. R. & Gordeev, V. V. Deep Sea Res. 25, 721–733 (1978).

    Article  CAS  ADS  Google Scholar 

  3. Klinkhammer, G. P. Chem. Geol. 29, 211–226 (1980).

    Article  CAS  ADS  Google Scholar 

  4. Lupton, J. E. et al. Earth planet. Sci. Lett. 50, 1149–1161 (1980).

    Article  Google Scholar 

  5. Lupton, J. E. & Craig, H. Science 214, 13–18 (1981).

    Article  CAS  ADS  Google Scholar 

  6. Baker, E. T., Lavelle, J. W. & Massoth, G. J. Nature 316, 342–344 (1985).

    Article  CAS  ADS  Google Scholar 

  7. Edmond, J. N. et al. Nature 297, 187–191 (1982).

    Article  CAS  ADS  Google Scholar 

  8. Trefry, J. H. et al. Geophys. Res. Lett. 12, 506–509 (1985).

    Article  CAS  ADS  Google Scholar 

  9. Cowen, J. P. & Bruland, K. W. Deep Sea Res. 32, 253–272 (1985).

    Article  CAS  ADS  Google Scholar 

  10. Winn, C. D., Karl, D. M. & Massoth, G. J. Nature 320, 744–746 (1986).

    Article  ADS  Google Scholar 

  11. Jannasch, H. W. & Wirsen, C. O. Appl envir. Microbiol. 41, 428–538 (1981).

    Google Scholar 

  12. Karl, D. M., Wirsen, C. O. & Jannasch, H. W. Science 207, 1345–1347 (1980).

    Article  CAS  ADS  Google Scholar 

  13. Jannasch, H. W. & Nelson, D. C. in Current Perspectives in Microbial Ecology (eds Klerg, M. J. & Reddy, C. A.) (American Society for Microbiology, Washington, 1984).

    Google Scholar 

  14. Ehrlich, H. L. Envir. biogeochem. Ecol. Bull. 35, 357–366 (1983).

    CAS  Google Scholar 

  15. Delaney, J. R., Johnson, M. P. & Karsten, J. L. J. geophys. Res. 86, 11747–11750 (1981).

    Article  CAS  ADS  Google Scholar 

  16. Normark, W. R. et al. Geology 11, 158–163 (1983).

    Article  CAS  ADS  Google Scholar 

  17. Normark, W. R. et al. Eos 66, 116 (1985).

    Google Scholar 

  18. Crane, K. et al. J. geophys. Res. 90, 727–744 (1985).

    Article  ADS  Google Scholar 

  19. Porter, K. G. & Feig, Y. S. Limnol. Oceanogr. 25, 943–948 (1980).

    Article  ADS  Google Scholar 

  20. Feely, R. A., Massoth, G. J. & Landing, W. M. Mar. Chem. 10, 431–453 (1981).

    Article  CAS  Google Scholar 

  21. Cowen, J. P. & Silver, M. W. Science 224, 1340–1342 (1984).

    Article  CAS  ADS  Google Scholar 

  22. Karsten, J. L. et al. Eos 65, 1111 (1984).

    Google Scholar 

  23. Hammond, S. E. et al. Eos 65, 1111 (1984).

    Google Scholar 

  24. Lupton, J. E. et al. Nature 316, 621–623 (1985).

    Article  ADS  Google Scholar 

  25. Ghiorse, W. C. & Hirsch, P. Arch. Mikrobiol. 123, 213–226 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cowen, J., Massoth, G. & Baker, E. Bacterial scavenging of Mn and Fe in a mid- to far-field hydrothermal particle plume. Nature 322, 169–171 (1986). https://doi.org/10.1038/322169a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/322169a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing