Letter | Published:

Evidence for the existence and development of visual inhibition in humans

Nature volume 321, pages 235237 (15 May 1986) | Download Citation

Subjects

Abstract

Neural inhibition forms a major mechanism by which the nervous system refines and elaborates its input1. Several recent experiments have demonstrated the existence of inhibition between orientation-selective cells of the primary visual cortex of the cat2–7 and although the precise function of this inhibition is uncertain, there is evidence that it enhances orientation tuning7 and that it is involved in pattern recognition8. Here we report a series of experiments which, on the basis of evoked potential responses to oriented stimuli, suggest that similar processes may exist in humans. Recordings from young infants further suggest that the machinery which mediates orientation-specific interactions may not be functional at birth, but develops only after 6–8 months.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    The Inhibitory Pathways of the Central Nervous System (Liverpool University Press, 1969).

  2. 2.

    , & J. Physiol., Lond. 231, 31–60 (1973).

  3. 3.

    , & Expl Brain Res. 43, 455–458 (1981).

  4. 4.

    , & Proc. R. Soc. B216, 335–354 (1982).

  5. 5.

    J. Physiol., Lond. 250, 305– (1975); 289, 33–53 (1979).

  6. 6.

    , & Expl Brain Res. 34, 351–363 (1979).

  7. 7.

    , , & Brain Res. 194, 517–520 (1980).

  8. 8.

    , & Nature 305, 226–228 (1983).

  9. 9.

    & J. Physiol., Lond. 207, 635–652 (1970).

  10. 10.

    , & Vision Res. 23, 119–127 (1983).

  11. 11.

    Vision Res. 23, 1401–1407 (1983).

  12. 12.

    & J. Physiol., Lond. 187, 437–445 (1966).

  13. 13.

    & Vision Res. 25, 1147–1154 (1985).

  14. 14.

    & Neurosci. Lett. Suppl. 23, S67 (1986).

  15. 15.

    & Nature 205, 913 (1965).

  16. 16.

    & Kybernetik 7, 23–31 (1970).

  17. 17.

    & Ann N.Y. Acad. Sci. 388, 113–124 (1982).

  18. 18.

    & Biol. Cybernet. 50, 401–408 (1984).

  19. 19.

    , & Neurosci. Lett. Suppl. 23, s84 (1986).

  20. 20.

    & J. Physiol., Lond. 218, 98p (1971).

  21. 21.

    in Developmental Neurobiology of Vision (ed. Freeman, R. D.) 31–41 (Plenum, New York, 1979).

  22. 22.

    & Physiol., Rev. 64, 325–434 (1984).

  23. 23.

    , , & Vision Res. 14, 1433–1439 (1974).

  24. 24.

    , & Nature 247, 403–404 (1974).

  25. 25.

    & Vision Res. 16, 867–869 (1976).

  26. 26.

    , , & Brain Res. 141, 179–184 (1978).

  27. 27.

    & Vision Res. 20, 699–707 (1980).

  28. 28.

    in Evoked Potentials Vol. 2 (eds Nodar, R. N. & Barber, C.) 514–525 (Butterworth, Boston, 1984).

  29. 29.

    & Vision Res. 125, 1399–1408 (1985).

  30. 30.

    Hum. Neurobiol. 3, 61–74 (1984).

  31. 31.

    & J. Physiol., Lond. 357, 505–523, 525–537 (1984).

  32. 32.

    & Vision Res. 25, 383–388 (1985).

  33. 33.

    Brain Res. 206, 166–171 (1981).

Download references

Author information

Affiliations

  1. Department of Psychology, University of Western Australia, Nedlands WA 6009, Australia

    • M. Concetta Morrone
    •  & David C. Burr

Authors

  1. Search for M. Concetta Morrone in:

  2. Search for David C. Burr in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/321235a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.