Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evidence for the existence and development of visual inhibition in humans

Abstract

Neural inhibition forms a major mechanism by which the nervous system refines and elaborates its input1. Several recent experiments have demonstrated the existence of inhibition between orientation-selective cells of the primary visual cortex of the cat2–7 and although the precise function of this inhibition is uncertain, there is evidence that it enhances orientation tuning7 and that it is involved in pattern recognition8. Here we report a series of experiments which, on the basis of evoked potential responses to oriented stimuli, suggest that similar processes may exist in humans. Recordings from young infants further suggest that the machinery which mediates orientation-specific interactions may not be functional at birth, but develops only after 6–8 months.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Eccles, J. C. The Inhibitory Pathways of the Central Nervous System (Liverpool University Press, 1969).

    Google Scholar 

  2. Bishop, P. O., Coombs, J. S. & Henry, G. H. J. Physiol., Lond. 231, 31–60 (1973).

    CAS  Article  Google Scholar 

  3. Burr, D. C., Morrone, M. C. & Maffei, L. Expl Brain Res. 43, 455–458 (1981).

    CAS  Google Scholar 

  4. Morrone, M. C., Burr, D. C. & Maffei, L. Proc. R. Soc. B216, 335–354 (1982).

    ADS  CAS  Google Scholar 

  5. Sillito, A. J. Physiol., Lond. 250, 305– (1975); 289, 33–53 (1979).

    CAS  Article  Google Scholar 

  6. Tsumoto, T., Eckart, W. & Creutzfeldt, O. D. Expl Brain Res. 34, 351–363 (1979).

    CAS  Article  Google Scholar 

  7. Sillito, A. M., Kemp, J. A., Milson, J. A. & Berardi, N. Brain Res. 194, 517–520 (1980).

    CAS  Article  Google Scholar 

  8. Morrone, M. C., Burr, D. C. & Ross, J. Nature 305, 226–228 (1983).

    ADS  CAS  Article  Google Scholar 

  9. Campbell, F. W. & Maffei, L. J. Physiol., Lond. 207, 635–652 (1970).

    CAS  Article  Google Scholar 

  10. Fiorentini, A., Pirchio, M. & Spinelli, D. Vision Res. 23, 119–127 (1983).

    CAS  Article  Google Scholar 

  11. Regan, D. Vision Res. 23, 1401–1407 (1983).

    CAS  Article  Google Scholar 

  12. Campbell, F. W. & Kulikowski, J. S. J. Physiol., Lond. 187, 437–445 (1966).

    CAS  Article  Google Scholar 

  13. Anderson, S. J. & Burr, D. C. Vision Res. 25, 1147–1154 (1985).

    CAS  Article  Google Scholar 

  14. Morrone, M. C. & Burr, D. C. Neurosci. Lett. Suppl. 23, S67 (1986).

    Google Scholar 

  15. Spekreijse, H. & Van der Tweel, L. H. Nature 205, 913 (1965).

    ADS  Article  Google Scholar 

  16. Spekreijse, H. & Oosting, H. Kybernetik 7, 23–31 (1970).

    Article  Google Scholar 

  17. Ratliff, F. & Zemon, V. Ann N.Y. Acad. Sci. 388, 113–124 (1982).

    ADS  CAS  Article  Google Scholar 

  18. Zemon, V. & Ratliff, F. Biol. Cybernet. 50, 401–408 (1984).

    CAS  Article  Google Scholar 

  19. Speed, H. D., Morrone, M. C. & Burr, D. C. Neurosci. Lett. Suppl. 23, s84 (1986).

    Google Scholar 

  20. Barlow, H. B. & Pettigrew, J. D. J. Physiol., Lond. 218, 98p (1971).

    PubMed  Google Scholar 

  21. Bonds, A. B. in Developmental Neurobiology of Vision (ed. Freeman, R. D.) 31–41 (Plenum, New York, 1979).

    Book  Google Scholar 

  22. Fregnac, Y. & Imbert, M. Physiol., Rev. 64, 325–434 (1984).

    CAS  Article  Google Scholar 

  23. Teller, D. Y., Morse, R., Borton, R. & Regal, D. Vision Res. 14, 1433–1439 (1974).

    CAS  Article  Google Scholar 

  24. Atkinson, J., Braddick, O. & Braddick, F. Nature 247, 403–404 (1974).

    ADS  CAS  Article  Google Scholar 

  25. Banks, M. S. & Salapatek, P. Vision Res. 16, 867–869 (1976).

    CAS  Article  Google Scholar 

  26. Pirchio, M., Spinelli, A., Fiorentini, A. & Maffei, L. Brain Res. 141, 179–184 (1978).

    CAS  Article  Google Scholar 

  27. Moskowitz, A. & Sokol, S. Vision Res. 20, 699–707 (1980).

    CAS  Article  Google Scholar 

  28. Sokol, S. in Evoked Potentials Vol. 2 (eds Nodar, R. N. & Barber, C.) 514–525 (Butterworth, Boston, 1984).

    Google Scholar 

  29. Norcia, A. M. & Tyler, C. W. Vision Res. 125, 1399–1408 (1985).

    Article  Google Scholar 

  30. Atkinson, J. Hum. Neurobiol. 3, 61–74 (1984).

    CAS  PubMed  Google Scholar 

  31. Berardi, N. & Morrone, M. C. J. Physiol., Lond. 357, 505–523, 525–537 (1984).

    CAS  Article  Google Scholar 

  32. Tsumoto, T. & Sato, H. Vision Res. 25, 383–388 (1985).

    CAS  Article  Google Scholar 

  33. Winfield, D. A. Brain Res. 206, 166–171 (1981).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morrone, M., Burr, D. Evidence for the existence and development of visual inhibition in humans. Nature 321, 235–237 (1986). https://doi.org/10.1038/321235a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/321235a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing