Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of an adenine˙cytosine base pair in DNA and its implications for mismatch repair

Abstract

Mutational pathways rely on introducing changes in the DNA double helix. This may be achieved by the incorporation of a noncomplementary base on replication or during genetic recombination1,2, leading to substitution mutation. In vivo studies3–7 have shown that most combinations of base-pair mismatches can be accommodated in the DNA double helix, albeit with varying efficiencies. Fidelity of replication requires the recognition and excision of mismatched bases by proofreading enzymes and post-replicative mismatch repair systems. Rates of excision vary with the type of mismatch and there is some evidence that these are influenced by the nature of the neighbouring sequences8,9. However, there is little experimental information about the molecular structure of mismatches and their effect on the DNA double helix. We have recently determined the crystal structures of several DNA fragments with guanine o thymine and adenine o guanine mismatches in a full turn of a B-DNA helix and now report the nature of the base pairing between adenine and cytosine in an isomorphous fragment. The base pair found in the present study is novel and we believe has not previously been demonstrated. Our results suggest that the enzymatic recognition of mismatches is likely to occur at the level of the base pairs and that the efficiency of repair can be correlated with structural features.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Radding, C. M. A Rev. Biochem. 47, 847–880 (1978).

    Article  CAS  Google Scholar 

  2. Loeb, A. L. & Kunkel, T. A. A. Rev. Biochem. 51, 429–457 (1982).

    Article  CAS  Google Scholar 

  3. Lu, A. L., Welsh, K., Clark, S., Su, S. S. & Moldrich, P. Cold Spring Harb. Symp quant. Biol. 49, 589–596 (1984).

    Article  CAS  Google Scholar 

  4. Kramer, B., Kramer, W. & Fritz, H. J. Cell 38, 879–887 (1985).

    Article  Google Scholar 

  5. Dohet, C., Wagner, R. & Radman, M. Proc. natn. Acad. Sci. U.S.A. 82, 503–505 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Claverys, S. J. P., Mejan, V., Gasc, A. M. & Siccard, A. M. Proc. natn. Acad. Sci. U.S.A. 80, 5956–5960 (1983).

    Article  ADS  CAS  Google Scholar 

  7. White, J. H., Lusnak, K. & Fogel, S. Nature 315, 350–352 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Fersht, A. R., Knill-Jones, J. W. & Tsui, W.-C. J molec. Biol. 156, 37–51 (1982).

    Article  CAS  Google Scholar 

  9. Topal, M. D., DiGuiseppi, S. R. & Sinhai, N. K. J. biol. Chem. 255, 11717–11724 (1980).

    CAS  Google Scholar 

  10. Crick, F. H. C. J. molec. Biol. 19, 548–555 (1966).

    Article  CAS  Google Scholar 

  11. Watson, J. D. & Crick, F. H. C. Nature 171, 694–967 (1953).

    Article  Google Scholar 

  12. Drake, J. W. Molecular Basis of Mutations (Holden-Day, San Francisco, 1970).

    Google Scholar 

  13. Topal, M. D. & Fresco, J. R. Nature 265, 285–189 (1976).

    Article  ADS  Google Scholar 

  14. Patel, D. J., Kozlowski, S. A., Ikuta, S. & Itakura, K. Biochemistry 23, 3218–3226 (1984).

    Article  CAS  Google Scholar 

  15. Kennard, O. J. biomolec. Struct. Dyn. 3, 205–225 (1985).

    Article  CAS  Google Scholar 

  16. Brown, T., Hunter, W. N., Kneale, G. & Kennard, O. Proc. natn. Acad. Sci. U.S.A. (in the press).

  17. Wing, R. et al. Nature 287, 755–758 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Hendrickson, W.A. & Konnert, J. H. in Biomolecular Structure, Conformation, Function and Evolution Vol. 1 (ed. Srinivasan, R.) 43–57 (Pergamon, Oxford, 1981).

    Book  Google Scholar 

  19. Westhof, E., Dumas, P. & Moras, D. J. molec. Biol. 184, 119–145 (1985).

    Article  CAS  Google Scholar 

  20. Saenger, W. Principles of Nucleic Acid Structure (Springer, New York, 1984).

    Book  Google Scholar 

  21. Taylor, R. & Kennard, O. J. molec. Struct. 78, 1028 (1982).

    Article  Google Scholar 

  22. Rich, A., Davies, D. R., Crick, F. H. C. & Watson, J. D. J. molec. Biol. 3, 71–86 (1961).

    Article  CAS  Google Scholar 

  23. Churprina, V. P. & Poltev, V. I. Nucleic Acids Res. 13, 141–152 (1985).

    Article  Google Scholar 

  24. Arnott, S. & Hukins, D. W. I. Biochem. biophys. Res. Commun. 47, 1504–1509 (1972).

    Article  CAS  Google Scholar 

  25. Brdwn, T., Kennard, O., Kneale, G. & Rabinovich, D. Nature 315, 604–606 (1985).

    Article  ADS  CAS  Google Scholar 

  26. Kneale, G., Brown, T., Kennard, O. & Rabinovich, D. J. molec. Biol 186, 805–814 (1985).

    Article  CAS  Google Scholar 

  27. Brown, T., Kneale, G., Hunter, W. N. & Kennard, O. Nucleic Acids Res. (in the press).

  28. Ho, P. S. et al. EMBO J. 4, 3617–3623 (1985).

    Article  CAS  Google Scholar 

  29. Tibanyenda, N. et al Eur. J. Biochem. 139, 19–25 (1983).

    Article  Google Scholar 

  30. Patel, D. J., Koslowski, S. A., Ikuta, S. & Itakura, K. Fedn Proc. 43, 2663–2670 (1984).

    CAS  Google Scholar 

  31. Aboul-ela, F., Koh, D., Tinoco, F. Jr & Martin, F. H. Nucleic Acids Res. 13, 4811–4824 (1985).

    Article  CAS  Google Scholar 

  32. Salisbury, S. & Anand, N. N. JCS chem. Commun. 985–986 (1985).

  33. Seeman, N. C., Rosenberg, J. M. & Rich, A. Proc. natn. Acad. Sci. U.S.A. 73, 804–808 (1976).

    Article  ADS  CAS  Google Scholar 

  34. Rein, R., Shibata, M., Gardino-Juarez, R. & Keiber-Emmons, T. Structure and Dynamics of Nucleic Acids and Proteins (eds Clementi, E. & Sarma, R.) 269–288 (Adenine, New York, 1983).

    Google Scholar 

  35. Dickerson, R. E. J. molec. Biol. 153, 410–441 (1983).

    Google Scholar 

  36. Shakked, Z. & Kennard, O. in Biological Macromolecules and Assemblies Vol. 2 (eds McPherson, A. & Jurnak, F.) 1–36 (Wiley, New York, 1985).

    Google Scholar 

  37. Haran, T. E., Berkovitch-Yellin, Z. & Shakked, Z. J. biomolec. Struct. Dyn. 2, 397–412 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunter, W., Brown, T., Anand, N. et al. Structure of an adenine˙cytosine base pair in DNA and its implications for mismatch repair. Nature 320, 552–555 (1986). https://doi.org/10.1038/320552a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/320552a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing