Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Calcium anomalies in the mantle and a subducted metaserpentinite origin for diamonds

Abstract

Most natural diamonds are thought to have formed within the upper mantle, before transport to the surface by kimberlites or lamproites, in a magnesian, calcium-poor, garnet-bearing harzburgite or dunite. Serpentinites, formed by hydration of oceanic lithosphere, are sufficiently poor in calcium and have high enough Mg/(Mg + Fe) values that, following subduction and prograde metamorphism to 1, 100 °C, 55–60 kbar, they would equilibrate as such harzburgites and dunites. Diamonds may be the high-pressure equivalent of graphite produced, or introduced, during serpentinization. The apparent restriction of diamonds and low-Ca garnet xenocrysts to cratons may result from the fact that subducted metaserpentinites, lodged within the mantle beneath the cratons, have been effectively isolated from participation in subsequent tectonic and magmatic events that occurred outside the craton margins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Meyer, H. O. A. & Boyd, F. R. Geochim. cosmochim. Acta 36, 1255–1273 (1972).

    Article  ADS  CAS  Google Scholar 

  2. Gurney, J. J., Harris, J. W. & Rickard, R. S. in Kimberlites, Diamonds and Diatremes: Their Geology, Petrology and Geochemistry (eds Boyd, F. R. & Meyer, H. O. A.) 1–15 (American Geophysical Union. Washington DC, 1979).

    Book  Google Scholar 

  3. Prinz, M., Manson, D. V., Hlava, P. F. & Keil, K. Phys. Chem. Earth 9, 797–815 (1975).

    Article  CAS  Google Scholar 

  4. Tsai, H. M., Meyer, H. O. A., Moreau, J. & Milledge, H. J. in Kimberlites, Diamonds and Diatremes: Their Geology, Petrology and Geochemistry (eds Boyd, F. R. & Meyer, H. O. A.) 16–26 (American Geophysical Union, Washington, DC, 1979).

    Book  Google Scholar 

  5. Sobolev, N. V., Lavrent'ev, Y. G., Pokhilenko, N. P. & Usova, L. V. Contr. Miner. Petrol. 40, 39–52 (1973).

    Article  ADS  CAS  Google Scholar 

  6. Mathias, M., Siebert, J. C. & Rickwood, P. C. Contr. Miner. Petrol. 26, 75–123 (1970).

    Article  ADS  CAS  Google Scholar 

  7. Meyer, H. O. A. & Tsai, H. M. Miner. Sci. Engng 8, 242–261 (1976).

    CAS  Google Scholar 

  8. Nixon, P. H. & Boyd, F. R. in Lesotho Kimberlites (ed. Nixon, P. H.) 48–56 (Cape and Transvaal, Capetown, 1973).

    Google Scholar 

  9. Boyd, F. R. & Nixon, P. H. Phys. Chem. Earth 9, 431–454 (1975).

    Article  CAS  Google Scholar 

  10. Danchin, R. V. in The Mantle Sample: Inclusions in Kimberlites and Other Volcanics (eds Boyd, F. R. & Meyer, H. O. A.) 104–126 (American Geophysical Union, Washington, DC, 1979).

    Book  Google Scholar 

  11. Dawson, J. B. & Smith, J. V. Nature 254, 580–581 (1975).

    Article  ADS  CAS  Google Scholar 

  12. Pokhilenko, N. P., Sobolev, N. V. & Lavrent'ev, Yu. G. in Extended Abstr. 2nd int. Kimberlite Conf., Santa Fe (American Geophysical Union, Washington, DC, 1977).

    Google Scholar 

  13. Shee, S. R., Gurney, J. J. & Robinson, D. N. Contr. Miner. Petrol. 81, 79–87 (1983).

    Article  ADS  Google Scholar 

  14. McCallum, M. E. & Eggler, D. H. Science 192, 253–256 (1976).

    Article  ADS  CAS  Google Scholar 

  15. Boyd, F. R. & Finnerty, A. A. J. geophys. Res. 85, 6911–6918 (1980).

    Article  ADS  CAS  Google Scholar 

  16. Coleman, R. G. Bull. N.Z. geol. Surv. 76, 102 pp.

  17. Sharp, W. E. Earth planet. Sci. Lett. 21, 351–354 (1974).

    Article  ADS  CAS  Google Scholar 

  18. Helmstaedt, H. & Doig, R. Phys. Chem. Earth 9, 95–111 (1975).

    Article  CAS  Google Scholar 

  19. Ringwood, A. E. Earth planet. Sci. Lett. 36, 443–448 (1977).

    Article  ADS  CAS  Google Scholar 

  20. Helmstaedt, H. EOS 59, 392–393 (1978).

    Google Scholar 

  21. Helmstaedt, H., Carmichael, D. M. & Percival, J. A. Abstr. Prog. geol. Soc. Am. 11, 442 (1979).

    Google Scholar 

  22. Exley, R. A., Smith, J. V. & Dawson, J. B. Am. Miner. 68, 512–516 (1983).

    CAS  Google Scholar 

  23. Nicolas, A. Bull. volcan. 32, 499–508 (1969).

    Article  ADS  CAS  Google Scholar 

  24. Aumento, F. & Loubat, H. Can. J. Earth Sci. 8, 631–663 (1971).

    Article  ADS  CAS  Google Scholar 

  25. Chidester, A. H. U.S. geol. Surv. prof. Pap. 345 (1962).

  26. Coleman, R. G. & Keith, T. E. J. Petrol. 12, 311–328 (1971).

    Article  ADS  CAS  Google Scholar 

  27. Francis, G. H. Am. J. Sci. 254, 201–226 (1956).

    Article  ADS  CAS  Google Scholar 

  28. Grubb, P. L. C. Econ. Geol. 57, 1228–1246 (1962).

    Article  CAS  Google Scholar 

  29. Hess, H. H., Smith, R. J. & Dengo, G. Am. Miner. 37, 68–75 (1952).

    CAS  Google Scholar 

  30. Larrabee, D. M. Bull. U.S. geol. Surv. 1283 (1969).

  31. Loferski, P. J. thesis. Virginia Polytechnic Inst. (1980).

  32. Mumpton, F. A. & Thomspon, C. S. Clays Clay Miner. 23, 131–143 (1975).

    Article  ADS  CAS  Google Scholar 

  33. Prinz, M. et al. J. geophys. Res. 81, 4087–4103 (1976).

    Article  ADS  CAS  Google Scholar 

  34. Harte, B., Gurney, J. J. & Harris, J. W. Contr. Miner. Petrol. 72, 181–190 (1980).

    Article  ADS  CAS  Google Scholar 

  35. Boyd, F. R. & Gurney, J. J. Yb. Carnegie Instn Wash. 81, 261–267 (1982).

    Google Scholar 

  36. Richardson, S. H., Gurney, J. J., Erlank, A. J. & Harris, J. W. Nature 310, 198–202 (1984).

    Article  ADS  CAS  Google Scholar 

  37. Davis, G. L. in Extended Abstr. 2nd int. Kimberlite Conf., Santa Fe (American Geophysical Union, Washington DC, 1977).

    Google Scholar 

  38. Davis, B. T. C. & Schairer, J. F. Yb. Carnegie Instn Wash. 64, 123–126 (1965).

    Google Scholar 

  39. Vajner, V. J., A. Rep. 1972–73, Precamb. Res. Unit, Univ. Cape Town, 12–23 (University of Cape Town, 1974).

  40. Helmstaedt, H. & Gurney, J. J. in Kimberlites I: Kimberlites and Related Rocks (ed. Kornprobst, J.) 425–434 (Eisevier, Amsterdam, 1984).

    Book  Google Scholar 

  41. Wyllie, P. J. & Sekine, T. Contr. Miner. Petrol. 79, 375–380 (1982).

    Article  ADS  CAS  Google Scholar 

  42. Pasteris, J. D. Geology 9, 356–359 (1981).

    Article  ADS  CAS  Google Scholar 

  43. Freund, F., Kathrein, H., Wengeler, H., Knobel, R. & Heinen, H. J. Geochim. cosmochim. Acta 44, 1319–1333 (1980).

    Article  ADS  CAS  Google Scholar 

  44. Gurney, J. J. & Switzer, G. S. Contr. Miner. Petrol. 39, 103–116 (1973).

    Article  ADS  CAS  Google Scholar 

  45. Lindsley, D. H. & Dixon, S. A. Am. J. Sci. 276, 1285–1301 (1976).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulze, D. Calcium anomalies in the mantle and a subducted metaserpentinite origin for diamonds. Nature 319, 483–485 (1986). https://doi.org/10.1038/319483a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/319483a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing