Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The immunodominant site of a synthetic immunogen has a conformational preference in water for a type-II reverse turn

Abstract

Many short synthetic peptides have now been shown to induce antibodies reactive with their cognate sequences in the intact folded protein1–8. Aside from the usefulness of such antibodies as site-specific reagents, the frequency with which this recognition occurs has raised several theoretical issues, the central one being that of how an antibody to a short synthetic peptide, which represents one of the most disordered states of a site in a protein, can react with the more ordered version of the same sequence in the folded protein. This apparent paradox can be resolved if the target site on the protein approaches disorder or if the peptide in solution or on a carrier adopts, with significant frequency, a conformation compatible with that of the cognate site in the protein. Various studies already suggest that antigenic sites in proteins correspond to regions of high atomic mobility1,9–15. We now show, using high-field nuclear magnetic resonance (NMR) spectroscopy, that a nonapeptide selected by several monoclonal antibodies as the immunodominant site of a 36-amino-acid immunogen (residues 75–110 of influenza virus haemagglutinin16,17) adopts a highly populated type-II reverse-turn conformation in water. This suggests that in this case the antibodies have selected a sequence possessing a conformational preference. Apart from helping us to understand immunological recognition, anti-peptide antibodies may provide reagents of sufficient precision for an immunological approach to the problem of protein folding18–23.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Lerner, R. A. Adv. Immun. 36, 1–44 (1984).

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Lerner, R. A. Nature 299, 592–596 (1982).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Enea, V. et al. Science 225, 628–630 (1984).

    ADS  CAS  Article  PubMed  Google Scholar 

  4. 4

    Ballou, W. R. et al. Science 228, 996–999 (1985).

    ADS  CAS  Article  PubMed  Google Scholar 

  5. 5

    Chow, M., Yabrov, R., Bittle, J., Hogle, J. & Baltimore, D. Proc. natn. Acad. Sci. U.S.A. 82, 910–914 (1985).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Kris, R. M. et al. Cell 40, 619–625 (1985).

    CAS  Article  PubMed  Google Scholar 

  7. 7

    Lamb, R. A., Zebedee, S. L. & Richardson, C. D. Cell 40, 627–633 (1985).

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Schmidt, M. A., O'Hanley, P. & Schoolnik, G. K. J. exp. Med. 161, 705–717 (1984).

    Article  Google Scholar 

  9. 9

    Artymiuk, P. J. et al. Nature 280, 563–568 (1979).

    ADS  CAS  Article  PubMed  Google Scholar 

  10. 10

    Moore, G. R. & Williams, R. J. P. Eur. J. Biochem. 103, 543–550 (1980).

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Westhof, E. et al. Nature 311, 123–126 (1984).

    ADS  CAS  Article  PubMed  Google Scholar 

  12. 12

    Tainer, J. A. et al. Nature 312, 127–133 (1984).

    ADS  CAS  Article  PubMed  Google Scholar 

  13. 13

    Williams, R. J. P. & Moore, G. R. Trends biochem. Sci. 10, 96–97 (1985).

    Article  Google Scholar 

  14. 14

    Tainer, J. A., Getzoff, E. D., Paterson, Y., Olson, A. J. & Lerner, R. A. A. Rev. Immun. 3, 501–535 (1985).

    CAS  Article  Google Scholar 

  15. 15

    Hirayama, A., Takagaki, Y. & Karush, F. J. Immun. 134, 3241–3247 (1985).

    CAS  PubMed  Google Scholar 

  16. 16

    Wilson, I. A. et al. Cell 37, 767–778 (1984).

    CAS  Article  PubMed  Google Scholar 

  17. 17

    Wilson, I. A., Wiley, D. C. & Skehel, J. J. Nature 289, 366–373 (1981).

    ADS  CAS  Article  PubMed  Google Scholar 

  18. 18

    Sachs, D. H., Schechter, A. N., Eastlake, A. & Anfinsen, C. B. Proc. natn. Acad. Sci. U.S.A. 69, 3790–3794 (1972).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Sachs, D. H., Schechter, A. N., Eastlake, A. & Anfinsen, C. B. J. Immun. 109, 1300–1310 (1972).

    CAS  PubMed  Google Scholar 

  20. 20

    Anfinsen, C. B. & Scheraga, H. A. Adv. Protein Chem. 29, 205–300 (1975).

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Wetlaufer, D. B. Adv. Protein Chem. 34, 61–92 (1981).

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Teale, J. M. & Benjamin, D. C. J. biol. Chem. 251, 4609–4615 (1976).

    CAS  PubMed  Google Scholar 

  23. 23

    Celada, F., Fowler, A. V. & Zabin, I. Biochemistry 17, 5156–5160 (1978).

    CAS  Article  PubMed  Google Scholar 

  24. 24

    Aue, W. P., Bartholdi, E. & Ernst, R. R. J. chem. Phys. 64, 2229–2246 (1976).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Bax, A. & Freeman, R. J. magn. Reson. 44, 542–561 (1981).

    ADS  CAS  Google Scholar 

  26. 26

    Rance, M. et al. Biochem. biophys. Res. Commun. 117, 479–485 (1983).

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Grathwohl, C. & Wuthrich, K. Biopolymers 20, 2623–2633 (1981).

    CAS  Article  Google Scholar 

  28. 28

    Deslauriers, R. & Smith, I. C. P. in Biological Magnetic Resonance Vol. 2 (eds Berliner, L. J. & Reuben, J.) 243–344 (Plenum, New York, 1980).

    Google Scholar 

  29. 29

    Urry, D. W. & Ohnishi, M. in Spectroscopic Approaches to Biomolecular Conformation (ed. Urry, D. W.) 263–300 (American Medical Association, Chicago, 1970).

    Google Scholar 

  30. 30

    Shenderovich, M. D., Nikiforovich, G. V. & Chipens, G. I. J. magn. Reson. 59, 1–12 (1984).

    ADS  CAS  Google Scholar 

  31. 31

    Bystrov, V. F. Prog. NMR Spectrosc. 10, 41–81 (1976).

    Article  Google Scholar 

  32. 32

    Crumpton, M. J. & Small, P. A. J. molec. Biol. 26, 143–146 (1967).

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Conway-Jacobs, A., Schechter, B. & Sela, M. Biochemistry 9, 4870–4875 (1970).

    CAS  Article  PubMed  Google Scholar 

  34. 34

    Schechter, B., Conway-Jacobs, A. & Sela, M. Eur. J. Biochem. 20, 321–324 (1971).

    CAS  Article  PubMed  Google Scholar 

  35. 35

    Houghten, R. A. Proc. natn. Acad. Sci. U.S.A. 82, 5131–5135 (1985).

    ADS  CAS  Article  Google Scholar 

  36. 36

    Guittet, E., Delsuc, M. A. & Lallemand, J. Y. J. Am. chem. Soc. 106, 4278–4279 (1984).

    CAS  Article  Google Scholar 

  37. 37

    Plateau, P. & Gueron, M. J. Am. chem. Soc. 104, 7311–7312 (1982).

    Article  Google Scholar 

  38. 38

    Benoiton, L. Can. J. Chem. 40, 570–572 (1962).

    CAS  Article  Google Scholar 

  39. 39

    Itoh, M., Hagiwara, D. & Kamiya, T. Tetrahedron Lett. 49, 4393–4394 (1975).

    Article  Google Scholar 

  40. 40

    Mendz, G. L. & Moore, W. J. Biochem. J. 229, 305–313 (1985).

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jane Dyson, H., Cross, K., Houghten, R. et al. The immunodominant site of a synthetic immunogen has a conformational preference in water for a type-II reverse turn. Nature 318, 480–483 (1985). https://doi.org/10.1038/318480a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing