Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fission yeast Schizosaccharomyces pombe correctly excises a mammalian RNA transcript intervening sequence

Abstract

Study of heterologous gene expression in the budding yeast Saccharomyces cerevisiae has shown that this organism is incapable of correctly removing intervening sequences from transcripts of higher eukaryotic genes1–3. This is probably due to the stringent requirement for the presence of a TACTAAC box close to the 3′ end of the intervening sequence if splicing in S. cerevisiae is to occur4–6. Comparison of the introns found in the fission yeast Schizosaccharomyces pombe7–10 has identified conserved sequences similar to those found in higher eukaryotes11. Therefore, we have investigated whether Schiz. pombe is capable of accurately excising intervening sequences from the transcripts of higher eukarotic genes. We show here that both the 5′ and 3′ splice sites of the simian virus 40 (SV40) small-T antigen transcript are accurately utilized when cloned viral DNA is expressed in Schiz. pombe cells. These data suggest that Schiz. pombe may be a better model system than S. cerevisiae for the genetic study of RNA splicing and for expressing higher eukaryotic genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Beggs, J. D., van den Berg, J., van Ooyen, A. & Weissman, C. Nature 283, 835–840 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Watts, F., Castle, C. & Beggs, J. D. EMBO J. 2, 2085–2091 (1983).

    Article  CAS  Google Scholar 

  3. Langford, C. J., Nellen, J., Niessing, J. & Gallwitz, D. Proc. natn. Acad. Sci. U.S.A. 80, 1496–1500 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Langford, C. J. & Gallwitz, D. Cell 33, 519–527 (1983).

    Article  CAS  Google Scholar 

  5. Pikielny, C. W., Teem, J. L. & Rosbash, M. Cell 34, 395–403 (1983).

    Article  CAS  Google Scholar 

  6. Langford, C. J., Klinz, F. J., Donath, C. & Gallwitz, D. Cell 36, 645–653 (1984).

    Article  CAS  Google Scholar 

  7. Hindley, J. & Phear, G. A. Gene 31, 129–134 (1984).

    Article  CAS  Google Scholar 

  8. Hiroaka, Y., Toda, T. & Yanagida, M. Cell 39, 349–358 (1984).

    Article  Google Scholar 

  9. Toda, T., Adachi, Y., Hiroaka, Y. & Yanagida, M. Cell 37, 233–242 (1984).

    Article  CAS  Google Scholar 

  10. Fukui, Y. & Kaziro, Y. EMBO J. 4, 687–691 (1985).

    Article  CAS  Google Scholar 

  11. Mount, S. M. Nucleic Acids Res. 10, 459–472 (1982).

    Article  CAS  Google Scholar 

  12. Beach, D., Durkacz, B. & Nurse, P. Nature 300, 703–709 (1982).

    Article  ADS  Google Scholar 

  13. Tooze, J. (ed.) The Molecular Biology of the Tumor Viruses 2nd edn (Cold Spring Harbor laboratory, New York, 1981).

  14. Harlow, E., Crawford, L. V., Pim, D. C. & Williamson, N. M. J. Virol. 39, 861–869 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Watts, F. Z., Castle, C. & Beggs, J. D. Proc. ALKO Yeast Symp. Vol. 1, 43–60 (Foundation . for Biotechnical and Industrial Fermentation Research, Helsinki, Finland, 1983).

    Google Scholar 

  16. Alwine, J. C. & Khoury, G. J. Virol. 35, 157–164 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shenk, T. E., Carbon, J. & Berg, P. J. Virol. 18, 664–672 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fradin, A., Jove, R., Hemenway, C., Keiser, H. D., Manley, J. L. & Prives, C. Cell 37, 927–936 (1984).

    Article  CAS  Google Scholar 

  19. Huysmans, E., Daws, E., Van den Berghe, A. & De Wachter, R. Nucleic Acids Res. 11, 2871–2880 (1983).

    Article  CAS  Google Scholar 

  20. Russell, P. R. Nature 301, 167–169 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Nurse, P. Trends Genet. 1, 51–55 (1985).

    Article  CAS  Google Scholar 

  22. Keller, E. B. & Noon, W. A. Proc. natn. Acad. Sci. U.S.A. 81, 7417–7420 (1984).

    Article  ADS  CAS  Google Scholar 

  23. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning. A Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  24. Berk, A. J. & Sharp, P. A. Cell 12, 721–732 (1977).

    Article  CAS  Google Scholar 

  25. Sanger, F. & Coulson, A. R. FEBS Lett. 87, 107–110 (1978).

    Article  CAS  Google Scholar 

  26. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  27. Towbin, H., Staehelin, T. & Gordon, J. Proc. natn. Acad. Sci. U.S.A. 76, 4350–4354 (1979).

    Article  ADS  CAS  Google Scholar 

  28. Simanis, V. & Lane, D. P. Virology 114, 88–100 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Käufer, N., Simanis, V. & Nurse, P. Fission yeast Schizosaccharomyces pombe correctly excises a mammalian RNA transcript intervening sequence. Nature 318, 78–80 (1985). https://doi.org/10.1038/318078a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/318078a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing