Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cold dark matter, the structure of galactic haloes and the origin of the Hubble sequence

Abstract

A popular theory for galaxy formation holds that the Universe is dominated by exotic particles such as axions, photinos or gravitinos (collectively known as cold dark matter, CDM)1–3. This hypothesis can reconcile the aesthetically pleasing idea of a flat universe with the standard theory of primordial nucleosynthesis and with upper limits on anisotropies in the cosmic microwave background4–6. The resulting model is consistent with the observed dynamics of galaxy clustering only if galaxy formation is biased towards high-density regions7,8. We have shown that such a biased model successfully matches the distribution of galaxies on megaparsec (Mpc) scales9. If it is to be viable, it must also account for the structure of individual galaxies and their haloes. Here we describe a simulation of a flat CDM universe which can resolve structures of comparable scale to the luminous parts of galaxies. We find that such a universe produces objects with the abundance and characteristic properties inferred for galaxy haloes. Our results imply that merging plays an important part in galaxy formation and suggest a possible explanation for the Hubble sequence.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Blumenthal, G. R., Faber, S. M., Primack, J. R. & Rees, M. J. Nature 311, 517–525 (1984).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Peebles, P. J. E. Astrophys. J. Lett. 263, L1–L5 (1982).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Bond, J. R. & Szalay, A. S. Astrophys. J. 274, 443–468 (1983).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Yang, J., Turner, M. S., Steigman, G., Schramm, D. N. & Olive, K. A. Astrophys. J. 281, 493–511 (1984).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Bond, J. R. & Efstathiou, G. Astrophys. J. Lett. 285, L45–L48 (1984).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Vittorio, N. & Silk, J. Astrophys. J. Lett. 285, L39–L43 (1984).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Bardeen, J. M. in Inner Space, Outer Space (eds Kolb, E. W. & Turner, M. S.) (University of Chicago Press, in the press).

  8. 8

    Kaiser, N. in Inner Space, Outer Space (eds Kolb, E. W. & Turner, M. S.) (University of Chicago Press, in the press).

  9. 9

    Davis, M., Efstathiou, G., Frenk, C. S. & White, S. D. M. Astrophys. J. 292, 371–394 (1985).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Davies, R. L., Efstathiou, G., Fall, S. M., Illingworth, G. & Schechter, P. L. Astrophys. J. 266, 41–57 (1983).

    ADS  Article  Google Scholar 

  11. 11

    Dressler, A. Astrophys. J. 236, 351–365 (1980).

    ADS  Article  Google Scholar 

  12. 12

    Rubin, V. C., Burstein, D., Ford, W. K. & Thonnard, N. Astrophys. J. 289, 81–104 (1985).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Rees, M. J. Mon. Not. R. astr. Soc. 213, 75p–81p (1985).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Silk, J. I. Preprint (University of California, Berkeley, 1985).

  15. 15

    Larson, R. B. Mon. Not. R. astr. Soc. 176, 31–52 (1976).

    ADS  Article  Google Scholar 

  16. 16

    Dekel, A. & Silk, J. I. Preprint (University of California, Berkeley, 1985).

  17. 17

    Fall, S. M. & Efstathiou, G. Mon. Not. R. astr. Soc. 193, 189–206 (1980).

    ADS  Article  Google Scholar 

  18. 18

    Gunn, J. E. in Astrophysical Cosmology (eds Bruck, H. A., Coyne, G. & Longair, M.) 233–262 (Pontifica Academia Scientiarium, 1982).

    Google Scholar 

  19. 19

    Larson, R. B., Tinsley, B. M. & Caldwell, C. N. Astrophys. J. 237, 692–707 (1980).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Toomre, A. in Evolution of Galaxies and Stellar Populations (eds Tinsley, B. M. & Larson,R. B.) 401–426 (Yale University Observatory, 1977).

    Google Scholar 

  21. 21

    White, S. D. M. & Negroponte, J. Mon. Not. R. astr. Soc. 201, 401–414 (1982).

    ADS  Article  Google Scholar 

  22. 22

    Cowie, L. Pap. presented at CITA Conf. on Galaxy Formation (Toronto, 1985).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Frenk, C., White, S., Efstathiou, G. et al. Cold dark matter, the structure of galactic haloes and the origin of the Hubble sequence. Nature 317, 595–597 (1985). https://doi.org/10.1038/317595a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing