Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Constitutive synthesis of interleukin-3 by leukaemia cell line WEHI-3B is due to retroviral insertion near the gene

Abstract

Interleukin-3 (multi-CSF) is a multilineage haematopoietic growth regulator that initiates the proliferation and differentiation of multipotential stem cells1–5. Complementary DNA clones encoding interleukin-3 (IL-3) have recently been isolated6,7 and the structure of the IL-3 gene determined8,9. IL-3 is produced by T lymphocytes or T lymphomas only after stimulation with antigens, mitogens or chemical activators such as phorbol esters. The myelomonocytic leukaemia line WEHI-3B10,11 also produces IL-3 but its production is constitutive12–14 and the WEHI-3B cells do not appear to produce significant levels of any of the other lymphokines normally secreted by T lymphocytes after stimulation. It has been proposed that the genetic change leading to the constitutive expression of IL-3 may have been a key event in the development of this leukaemia2,3,15,16. We report here that the constitutive synthesis of IL-3 by the WEHI-3B cell line is due to the insertion of an endogenous retrovirus-like element close to the 5′ end of the gene. The insertion, an intracisternal A particle (IAP) genome, is positioned with its 5′ long terminal repeat (LTR) close to the promoter region of the IL-3 gene, resulting in constitutive synthesis of IL-3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nicola, N. A. & Vadas, M. Immun. Today 5, 76–80 (1984).

    Article  CAS  Google Scholar 

  2. Iscove, N. N. & Roitsch, C. Proc. IVth Int. Lymphokine Workshop (Academic, New York, 1985).

    Google Scholar 

  3. Garland, J. M. Lymphokines 9, 153–200 (1984).

    CAS  Google Scholar 

  4. Hapel, A. J. et al. Blood 65, 1453–1459 (1985).

    CAS  PubMed  Google Scholar 

  5. Rennick, D. M. et al. J. Immun. 134, 910–914 (1985).

    CAS  Google Scholar 

  6. Fung, M. C. et al. Nature 307, 233–237 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Yokota, T. et al. Proc. natn. Acad. Sci. U.S.A. 81, 1070–1074 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Campbell, H. D., Ymer, S., Fung, M.-C. & Young, I. G. Eur. J. Biochem. 150, 297–304 (1985).

    Article  CAS  Google Scholar 

  9. Miyatake, S., Yokota, T., Lee, F. & Arai, K-I. Proc. natn. Acad. Sci. U.S.A. 82, 316–320 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Warner, N. L., Moore, M. A. S. & Metcalf, D. J. natn. Cancer Inst. 43, 963–982 (1969).

    CAS  Google Scholar 

  11. Metcalf, D. & Nicola, N. A. Int. J. Cancer 30, 773–780 (1982).

    Article  CAS  Google Scholar 

  12. Metcalf, D., Moore, M. A. S. & Warner, N. L. J. natn. Cancer Inst. 43, 983–1001 (1969).

    CAS  Google Scholar 

  13. Ralph, P., Moore, M. A. S. & Nilsson, K. J exp. Med. 143, 1528–1533 (1976).

    Article  CAS  Google Scholar 

  14. Lee, J. C., Hapel, A. J. & Ihle, J. N. J. Immun. 128, 2393–2398 (1982).

    CAS  PubMed  Google Scholar 

  15. Dexter, T. M. & Allen, T. D. J. Path. 141, 415–433 (1983).

    Article  CAS  Google Scholar 

  16. Schrader, J. W. & Crapper, R. M. Proc. natn. Acad. Sci. U.S.A. 80, 6892–6896 (1983).

    Article  ADS  CAS  Google Scholar 

  17. Frischauf, A.-M., Lehrach, H., Poustka, A. & Murray, N. J. molec. Biol. 170, 827–842 (1983).

    Article  CAS  Google Scholar 

  18. Benton, W. D. & Davis, R. W. Science 196, 180–182 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Messing, J. & Vieira, J. Gene 19, 269–276 (1982).

    Article  CAS  Google Scholar 

  20. Canaani, E. et al. Proc. natn. Acad. Sci. U.S.A. 80, 7118–7122 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Christy, R. J., Brown, A. R., Gourlie, B. B. & Huang, R. C. C. Nucleic Acids Res. 13, 289–302 (1985).

    Article  CAS  Google Scholar 

  22. Kuff, E. L. et al. Proc. natn. Acad. Sci. U.S.A. 80, 1992–1996 (1983).

    Article  ADS  CAS  Google Scholar 

  23. Ono, M. & Ohishi, H. Nucleic Acids Res. 11, 7169–7179 (1983).

    Article  CAS  Google Scholar 

  24. Graham, F. L. & Bacchetti, S. in Techniques in the Life Sciences Vol. B 5 (Elsevier, Dublin, 1983).

    Google Scholar 

  25. Ihle, J. N. et al. J. Immun. 129, 1377–1383 (1982).

    CAS  PubMed  Google Scholar 

  26. Hapel, A. J., Warren, H. S. & Hume, D. A. Blood 64, 786–790 (1984).

    CAS  PubMed  Google Scholar 

  27. Varmus, H. E. Science 216, 812–820 (1982).

    Article  ADS  CAS  Google Scholar 

  28. Khoury, G. & Gruss, P. Cell 33, 313–314 (1983).

    Article  CAS  Google Scholar 

  29. Horowitz, M., Luria, S., Rechavi, G. & Givol, D. EMBO J. 3, 2937–2941 (1984).

    Article  CAS  Google Scholar 

  30. Kuff, E. L. & Fewell, J. W. Molec. cell. Biol. 5, 474–483 (1985).

    Article  CAS  Google Scholar 

  31. Augenlicht, L. M., Kobrin, D., Pavlovec, A. & Royston, M. E. J. biol. Chem. 259, 1842–1847 (1984).

    CAS  PubMed  Google Scholar 

  32. Heldin, C.-H. & Westermark, B. Cell 37, 9–20 (1984).

    Article  CAS  Google Scholar 

  33. Sporn, M. B. & Roberts, A. B. Nature 313, 745–747 (1985).

    Article  ADS  CAS  Google Scholar 

  34. Todaro, G. J. & De Larco, J. E. Cancer Res. 38, 4147–5154 (1978).

    CAS  Google Scholar 

  35. Derynck, R., Roberts, A. B., Winkler, M. E., Chen, E. Y. & Goeddel, D. V. Cell 38, 287–297 (1984).

    Article  CAS  Google Scholar 

  36. Lee, D. C., Rose, T. M., Webb, N. R. & Todaro, G. J. Nature 313, 489–491 (1985).

    Article  ADS  CAS  Google Scholar 

  37. Waterfield, M. D. et al. Nature 304, 35–39 (1983).

    Article  ADS  CAS  Google Scholar 

  38. Doolittle, R. F. et al. Science 221, 275–277 (1983).

    Article  ADS  CAS  Google Scholar 

  39. Downward, J. et al. Nature 307, 521–527 (1984).

    Article  ADS  CAS  Google Scholar 

  40. Metcalf, D. Science 229, 16–22 (1985).

    Article  ADS  CAS  Google Scholar 

  41. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  42. Sariger, F., Coulson, A. R., Hong, G. F., Hill, D. F. & Peterson, G. B. J. molec. Biol. 162, 729–773 (1982).

    Article  Google Scholar 

  43. Duckworth, M. L. et al. Nucleic Acids Res. 9, 1681–1706 (1981).

    Article  Google Scholar 

  44. Tanaka, T. & Letsinger, R. L. Nucleic Acids Res. 10, 3249–3260 (1982).

    Article  CAS  Google Scholar 

  45. McBride, L. J. & Caruthers, M. H. Tetrahedron Lett. 24, 245–248 (1983).

    Article  CAS  Google Scholar 

  46. Staden, R. Nucleic Acids Res. 8, 3673–3694 (1980); 10, 4731–4751 (1982); 12, 499–503 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ymer, S., Tucker, W., Sanderson, C. et al. Constitutive synthesis of interleukin-3 by leukaemia cell line WEHI-3B is due to retroviral insertion near the gene. Nature 317, 255–258 (1985). https://doi.org/10.1038/317255a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/317255a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing