Oxygen isotope evidence for slab-derived fluids in the sub-arc mantle


The subduction of oceanic lithosphere is thought to enrich the mantle in elements concentrated in altered oceanic crust and its sedimentary cover (for example, H2O, CO2 and alkalis)1,2. This enrichment is generally inferred from the geochemistry of island-arc lavas3. More direct evidence—such as samples from the mantle with a clear crustal origin4—is rare. Inclusions of silicate glass within mantle-derived minerals can have major- and trace-element compositions unlike basalt5,6, and sometimes contain ‘enriched’ isotopic compositions of Sr, Nd and Pb, suggesting that the inclusions are partial melts of subducted oceanic crust or sediments6. Alternatively, some of these alkali-rich inclusions may have been produced by melting peridotites to low degrees (possibly in the presence of volatiles)7. Here we present oxygen isotope data from silicate glass inclusions obtained from mantle olivine samples in an island-arc setting. These data provide direct evidence that the inclusions are derived from a source rich in material from the subducted oceanic crust and therefore that slab-derived fluids have infiltrated the sub-arc mantle wedge.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Transmitted light photomicrographs (A and B), taken with crossed polarizers, of regions containing the phonolitic glasses analysed in this study.
Figure 2: Abundances of trace and minor elements in glasses and minerals analysed in this study and comparison with models for the origin of phonolitic melt.


  1. 1

    Leeman, W. P., Carr, M. J. & Morris, J. D. Boron geochemistry of the Central American volcanic arc: constraints on the genesis of subduction-related magmas. Geochim. Cosmochim. Acta 58, 149–168 (1994).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Stolper, E. M. & Newman, S. The role of water in the petrogenesis of Mariana trough magmas. Earth Planet. Sci. Lett. 121, 293–325 (1994).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Morris, J. & Tera, F. 10Be and 9Be in mineral separates and whole rocks from volcanic arcs: implications for sediment subduction. Geochim. Cosmochim. Acta 53, 3197–3206 (1989).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Daniels, L. R. M., Gurney, J. J. & Harte, B. Acrustal mineral in a mantle diamond. Nature 379, 153–156 (1996).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Schiano, P. & Clocchiatti, R. Worldwide occurrence of silica-rich melts in sub-continental and sub-oceanic mantle minerals. Nature 368, 621–624 (1994).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Hauri, E. H., Schimizu, N., Dieu, J. J. & Hart, S. R. Evidence for hotspot-related carbonatite metasomatism in the oceanic upper mantle. Nature 365, 221–227 (1993).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Baker, M. B., Hirschmann, M. M., Ghiorso, M. S. & Stolper, E. M. Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations. Nature 375, 308–311 (1995).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Ito, E., White, W. M. & Gopel, C. The O, Sr, Nd and Pb isotope geochemistry of MORB. Chem. Geol. 62, 157–176 (1987).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Eiler, J. M. et al. Oxygen isotope variations in ocean island basalt phenocrysts. Geochim. Cosmochim. Acta 61, 2281–2293 (1997).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Mattey, D., Lowry, D. & Macpherson, C. Oxygen isotope composition of mantle peridotite. Earth Planet. Sci. Lett. 128, 231–241 (1994).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Muehlenbachs, K. in Stable Isotopes in High Temperature Geological Processes(eds Valley, J. W., Taylor, H. P. & O'Neill, J. R.) 425–444 (Mineralogical Society of America, Washington DC, 1986).

    Google Scholar 

  12. 12

    Arthur, M. A., Anderson, T. F. & Kaplan, I. R. in SEPM Short Course no. 10(SEPM, Tulsa, 1986).

    Google Scholar 

  13. 13

    Kolodny, Y. & Epstein, S. Stable isotope geochemistry of deep sea cherts. Geochim. Cosmochim. Acta 40, 1195–1209 (1976).

    ADS  CAS  Article  Google Scholar 

  14. 14

    McInnes, B. I. A. & Cameron, E. M. Carbonated, alkaline hybridizing melts from the sub-arc environment: mantle wedge samples from the Tabar–Lihir–Tanga–Feni arc, Papua New Guinea. Earth Planet. Sci. Lett. 122, 125–141 (1994).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Taylor, B. Bismarck sea: evolution of a back-arc basin. Geology 7, 171–174 (1979).

    ADS  Article  Google Scholar 

  16. 16

    Taylor, H. P. Jr & Epstein, S. Relationship between 18O/16O ratios in coexisting minerals of igneous and metamorphic rocks. Geol. Soc. Am. Bull. 73, 461–480 (1962).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Palin, J. M., Epstein, S. & Stolper, E. M. Oxygen isotope partitioning between rhyolitic glass/melt and CO2: an experimental study at 550–950 °C and 1 bar. Geochim. Cosmochim. Acta 60, 1963–1973 (1996).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Eiler, J. M., Valley, J. W., Graham, C. M. & Baumgartner, L. P. Ion microprobe evidence for the mechanisms of stable isotope retrogression in high-grade metamorphic rocks. Contrib. Mineral. Petrol. 118, 365–378 (1995).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Spivack, A. J. & Edmond, J. M. Boron isotope exchange between seawater and the oceanic crust. Geochim. Cosmochim. Acta 51, 1033–1043 (1987).

    ADS  CAS  Article  Google Scholar 

  20. 20

    McCulloch, M. T. & Gamble, J. A. Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet. Sci. Lett. 102, 358–374 (1991).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Green, T. H. Experimental studies of trace-element partitioning applicable to igneous petrogenesis–Sedonia 16 years later. Chem. Geol. 117, 1–36 (1994).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Staudigel, H., Plank, T., White, W. & Schminke, H. U. Geochemical fluxes during seafloor alteration of the basaltic upper oceanic crust: DSDP sites 417 and 418 (overview). AGU Geophys. Monogr. 96, 19–38 (1996).

    Google Scholar 

  23. 23

    Salters, V. J. M. & Shimizu, N. World-wide occurrence of HFSE-depleted mantle. Geochim. Cosmochim. Acta 52, 2177–2182 (1988).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Sharma, M. & Wasserburg, G. J. The neodymium isotopic compositions and rare earth patterns in highly depelted ultramafic rocks. Geochim. Cosmochim. Acta 60, 4537–4550 (1996).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Johnson, K. T. M., Dick, H. J. B. & Shimizu, N. Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. J. Geophys. Res. 95, 2661–2678 (1990).

    ADS  Article  Google Scholar 

  26. 26

    Rampone, E. et al. Trace element and isotope geochemistry of depleted peridotites from an N-MORB type ophiolite (Internal Liguride, N. Italy). Contrib. Mineral. Petrol. 123, 61–76 (1996).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Brenan, J. M., Shaw, H. F. & Ryerson, F. J. in 7th Annual Goldschmidt Conference 36 (Tucson, AZ, USA, 1997).

    Google Scholar 

  28. 28

    Schneider, M. E. & Eggler, D. H. Fluids in equilbrium with peridotite minerals: implications for mantle metasomatism. Geochim. Cosmochim. Acta 50, 711–724 (1986).

    ADS  CAS  Article  Google Scholar 

  29. 29

    Keppler, H. Cosntraints from partitioning experiments on the composition of subduction-zone fluids. Nature 380, 237–240 (1996).

    ADS  CAS  Article  Google Scholar 

  30. 30

    Ryan, J. G., Morris, J., Tera, F., Leeman, W. P. & Tsvetkov, A. Cross-arc geochemical variations in the Kurile arc as a function of slab depth. Science 270, 625–627 (1995).

    ADS  Article  Google Scholar 

  31. 31

    Draper, D. S. & Green, T. H. P–T phase relations of silicic, alkaline, aluminous mantle-xenolith glasses under anhydrous and C-O-H fluid-saturated conditions. J. Petrol. 38, 1187–1224.

  32. 32

    Brenan, J. M., Shaw, H. F., Ryerson, F. J. & Phinney, D. L. Mineral–aqueous fluid partitioning of trace elements at 900 °C and 2.0GPa: constraints on the trace element chemistry of mantle and deep crustal fluids. Geochim. Cosmochim. Acta 59, 3331–3350 (1995).

    ADS  CAS  Article  Google Scholar 

  33. 33

    Hawkesworth, C. J., Galllagher, K., Hergt, J. M. & McDermott, F. Destructive plate margin magmatism: geochemistry and melt generation. Lithos 33, 169–188 (1994).

    ADS  CAS  Article  Google Scholar 

  34. 34

    Eiler, J. M., Graham, C. M. & Valley, J. W. SIMS analysis of oxygen isotopes: matrix effects in complex minerals and glasses. Chem. Geol. 138, 221–244 (1997).

    ADS  CAS  Article  Google Scholar 

  35. 35

    McDonough, W. F. & Sun, S. S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    ADS  CAS  Article  Google Scholar 

  36. 36

    Plank, T. & Langmuir, C. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol.(in the press).

Download references

Author information



Corresponding author

Correspondence to John M. Eiler.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eiler, J., McInnes, B., Valley, J. et al. Oxygen isotope evidence for slab-derived fluids in the sub-arc mantle. Nature 393, 777–781 (1998). https://doi.org/10.1038/31679

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.