Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Human γ-chain genes are rearranged in leukaemic T cells and map to the short arm of chromosome 7

Abstract

Three gene families that rearrange during the somatic development of T cells have been identified in the murine genome. Two of these gene families (α and β) encode subunits of the antigen-specific T-cell receptor and are also present in the human genome1–5. The third gene family, designated here as the γ-chain gene family, is rearranged in murine cytolytic T cells but not in most helper T cells6–8. Here we present evidence that the human genome also contains γ-chain genes that undergo somatic rearrangement in leukaemia-derived T cells. Murine γ-chain genes appear to be encoded in gene segments that are analogous to the immunoglobulin gene variable, constant and joining segments8. There are two closely related constant-region gene segments in the human genome. One of the constant-region genes is deleted in all three T-cell leukaemias that we have studied. The two constant-region γ-chain genes reside on the short arm of chromosome 7 (7p15); this region is involved in chromosomal rearrangements identified in T cells from individuals with the immunodeficiency syndrome ataxia telangiectasia9–12 and observed only rarely in routine cytogenetic analyses of normal individuals13–16. This region is also a secondary site of β-chain gene hybridization17.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Yanagi, Y. et al. Nature 308, 146 (1984).

    Article  ADS  Google Scholar 

  2. Hedrick, S. M. et al. Nature 308, 153 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Chien, Y. et al. Nature 312, 31 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Saito, H. et al. Nature 312, 36 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Sim, G. K. et al. Nature 312, 771 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Saito, H. et al. Nature 309, 757 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Kranz, D. M. et al. Nature 313, 752 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Hayday, A. C. et al. Cell 40, 259 (1985).

    Article  CAS  Google Scholar 

  9. McFarlin, D. W. et al. Medicine 51, 281 (1972).

    Article  CAS  Google Scholar 

  10. Aurias, A. et al. Mutat. Res. 69, 369 (1980).

    Article  CAS  Google Scholar 

  11. Scheres, J. M. C. J. J Pediat. 97, 440 (1980).

    Article  CAS  Google Scholar 

  12. Ying, K. L. & Decoteau, W. E. Cancer Genet. Cytogenet. 4, 311 (1981).

    Article  CAS  Google Scholar 

  13. Ayme, S. Hum. Genet. 31, 161 (1976).

    Article  CAS  Google Scholar 

  14. Leeksma, C. H. W. Scand J. Haemal. 27, 19 (1981).

    Article  CAS  Google Scholar 

  15. Mihelick, K. Am. J. hum. Genet. 35, 144 (1983).

    Google Scholar 

  16. Wallace, E. Hum. Genet. 66, 157 (1984).

    Article  CAS  Google Scholar 

  17. Morton, C. C. et al. Science 228, 582 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Kaufmann, Y. et al. Proc. natn. Acad. Sci. U.S.A. 78, 2502 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Kaufmann, Y. & Berke, G. J Immun. 131, 50 (1983).

    CAS  PubMed  Google Scholar 

  20. Maniatis, T., Fritsch, E. F. & J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  21. Breathnach, R. et al. Proc. natn. Acad. Sci. U.S.A. 75, 4853 (1978).

    Article  ADS  CAS  Google Scholar 

  22. Chitambar, C. R. et al. Am. J. Med. 75, 756 (1983).

    Article  CAS  Google Scholar 

  23. Shows, T. B. Proc. natn. Acad. Sci. U.S.A. 69, 348 (1972.

    Article  ADS  CAS  Google Scholar 

  24. Shows, T. B. et al. Cytogenet. Cell Genet. 21, 99 (1978).

    Article  CAS  Google Scholar 

  25. Caccia, N. et al. Cell 37, 1091 (1984).

    Article  CAS  Google Scholar 

  26. Collins, M. K. L. et al. Nature 314, 273 (1985).

    Article  ADS  CAS  Google Scholar 

  27. Croce, C. M. et al. Science 227, 1044 (1985).

    Article  ADS  CAS  Google Scholar 

  28. Jones, C. et al. Science 228, 83 (1985).

    Article  ADS  CAS  Google Scholar 

  29. Harnden, D. G. et al. Cytogenet. Cell Genet. 31, 1 (1981).

    Article  Google Scholar 

  30. Moorhead, P. S. et al. Expl Cell Res. 20, 613 (1960).

    Article  CAS  Google Scholar 

  31. Morton, C. C. et al. Am. J. hum. Genet. 36, 576 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murre, C., Waldmann, R., Morton, C. et al. Human γ-chain genes are rearranged in leukaemic T cells and map to the short arm of chromosome 7. Nature 316, 549–552 (1985). https://doi.org/10.1038/316549a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/316549a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing