Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Anatomy of a cosmic-ray neutrino source and the Cygnus X-3 system

Abstract

There is strong evidence that a compact object in the Cygnus X-3 binary system produces an intense beam of ultra-high-energy cosmic rays. Here, we examine the effects of such a beam hitting the companion star and of the subsequent production of secondary neutrinos. We consider how high a beam luminosity is allowed and how high a neutrino to γ-ray (ν/γ) ratio can be obtained from such a system. We find a maximum allowable beam luminosity of 1042erg s−1 for a system consisting of a compact object and a 1–10 M main-sequence target star. The proton beam must heat a relatively small area of the target star to satisfy observational constraints on the resulting stellar wind. With such a model, a ν/γ flux ratio of 103 can result from a combination of γ-ray absorption and a large ν/γ duty cycle ratio. We find that the high density of the atmosphere resulting from compression by the beam leads to pion cascading and a neutrino spectrum peaking at 1–10 GeV energies, which may avoid catastrophic heating of the target star through internal ν interactions. The ν flux and duty cycle are predicted to be accordingly reduced in the energy range above 1 TeV available to a deep underwater neutrino detector.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Eichler, D. & Vestrand, W. T. Nature 307, 613–614 (1984).

    Article  ADS  Google Scholar 

  2. Hillas, A. M. Nature 312, 50–51 (1984).

    Article  ADS  Google Scholar 

  3. Chanmugam, G. & Brecher, K. Nature 313, 767–768 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Samorski, M. & Stamm, W. Astrophys. J. Lett. 268, L17–L21 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Lloyd-Evans, J. et al. Nature 305, 784–787 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Dowthwaite, J. C. et al. Astr. Astrophys. 126, 1–6 (1983).

    ADS  CAS  Google Scholar 

  7. Wdowczyk, J. & Wolfendale, A. W. Nature 305, 609–610 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Eichler, D. Nature 275, 725–726 (1978).

    Article  ADS  Google Scholar 

  9. Stenger, V. J. Astrophys. J. 286, 810–816 (1984).

    Article  ADS  Google Scholar 

  10. Stecker, F. W. Astrophys. J. 228, 919–927 (1979).

    Article  ADS  CAS  Google Scholar 

  11. Marshak, M. L. et al. Phys. Rev. Lett. 54, 2079–2082 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Perkins, D. H. A. Rev. nucl. Part. Sci. 34, 1–52 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Vestrand, W. T. & Eichler, D. Astrophys. J. 261, 251–258 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Bonnet-Bidaud, J. M. & van der Klis, M., Astr. Astrophys. 101, 299–304 (1981).

    ADS  Google Scholar 

  15. Davidsen, A. & Ostriker, J. P. Astrophys. J. 189, 331–338 (1974).

    Article  ADS  CAS  Google Scholar 

  16. Ghosh, P., Eisner, R. F., Weisshopf, M. C. & Sutherland, P. G. Astrophys. J. 251, 230–245 (1981).

    Article  ADS  CAS  Google Scholar 

  17. White, N. E. & Holt, S. S. Astrophys. J. 257, 318–337 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Baltrusaitis, et al. Phys. Rev. Lett. 52, 1380–1383 (1984).

    Article  ADS  CAS  Google Scholar 

  19. Stecker, F. W. Nature phys. Sci. 242, 59–60 (1973).

    Article  ADS  CAS  Google Scholar 

  20. Gaisser, T. K. & Stanev, T. Phys. Rev. Lett. 54, 2265–2268 (1985).

    Article  ADS  CAS  Google Scholar 

  21. Roberts, A. (ed) Proc. 1978 DUMAND Sum. Wkshp (Scripps Institute Press, 1979).

  22. Kernan, A. & Van Dalen, G. Phys. Rep. 106, 297–398 (1984).

    Article  ADS  CAS  Google Scholar 

  23. Mathews, W. G. Astrophys. J. 272, 390–399 (1983).

    Article  ADS  CAS  Google Scholar 

  24. Lee, H. & Bludman, S. A. Astrophys. J. 290, 28–32 (1985).

    Article  ADS  CAS  Google Scholar 

  25. Kolb, E. W., Turner, M. S. & Walker, T. P. Preprint, Fermi Laboratory (1985).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stecker, F., Harding, A. & Barnard, J. Anatomy of a cosmic-ray neutrino source and the Cygnus X-3 system. Nature 316, 418–420 (1985). https://doi.org/10.1038/316418a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/316418a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing