Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sliding distance of actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle

Abstract

Muscle contraction results from a sliding movement of actin filaments induced by myosin crossbridges on hydrolysis of ATP1,2, and many non-muscle cells are thought to move using a similar mechanism3–5. The molecular mechanism of muscle contraction, however, is not completely understood6,7. One of the major problems is the mechanochemical coupling at high velocity under near-zero load8–13. Here, we report measurements of the sliding distance of an actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle in an unloaded condition. We used single sarcomeres from which the Z-lines, structures which anchor the thin filaments in the sarcomere, had been completely removed by calcium-activated neutral protease (CANP)14 and trypsin, and measured both the sliding velocity of single actin filaments along myosin filaments and the ATPase activity during sliding. Our results show that the average sliding distance of the actin filament is ≥600 Å during one ATP cycle, much longer than the length of power stroke of myosin crossbridges deduced from mechanical studies of muscle, which is of the order of 80 Å (for example, ref. 15).

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Huxley, A. F. Prog. Biophys. molec. Biol. 7, 255–312 (1957).

    CAS  Google Scholar 

  2. Huxley, H. E. Science 164, 1356–1366 (1969).

    Article  ADS  CAS  Google Scholar 

  3. Kamiya, N. A. Rev. Pl Physiol. 32, 205–236 (1981).

    Article  CAS  Google Scholar 

  4. Sheetz, M. P. & Spudich, J. A. Nature 303, 31–35 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Higashi-Fujime, S. J Cell Biol. 87, 569–578 (1980).

    Article  CAS  Google Scholar 

  6. Huxley, H. E. et al. J. molec. Biol. 169, 469–506 (1983).

    Article  CAS  Google Scholar 

  7. Yanagida, T. J. J. Muscle Res. Cell Motil. 6, 43–52 (1985).

    Article  CAS  Google Scholar 

  8. Huxley, A. F. Proc. R. Soc. B183, 83–86 (1976).

    Google Scholar 

  9. Eisenberg, E., Hill, T. L. & Chen, Y. Biophys. J. 29, 195–227 (1980).

    Article  CAS  Google Scholar 

  10. Podolsky, R. J. & Nolan, A. C. Cold Spring Harb. Symp. quant. Biol. 37, 661–668 (1972).

    Article  Google Scholar 

  11. Kushmeric, M. J., Larson, R. E. & Davies, R. E. Proc. R. Soc. B174, 293–313 (1969).

    ADS  Google Scholar 

  12. Irving, M. & Woledge, R. C. J. Physiol., Lond. 321, 411–422 (1981).

    Article  CAS  Google Scholar 

  13. Homsher, E., Irving, M. & Wallner, A. J. Physiol., Lond. 321, 423–436 (1981).

    Article  CAS  Google Scholar 

  14. Wayne, A. B., Stromer, M. H., Goll, D. E. & Suzuki, A. J. Cell Biol. 52, 367–381 (1972).

    Article  Google Scholar 

  15. Huxley, A. F. & Simmons, R. M. Nature 233, 533–538 (1971).

    Article  ADS  CAS  Google Scholar 

  16. Wulf, E., Deboben, A., Bautz, A., Faulstaich, H. & Wieland, Th. Proc. natn. Acad. Sci. U.S.A. 76, 4498–4502 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Yanagida, T., Nakase, M., Nishiyama, K. & Oosawa, F. Nature 307, 58–60 (1984).

    Article  ADS  CAS  Google Scholar 

  18. Arata, T., Mukohata, Y. & Tonomura, Y. J. Biochem., Tokyo 82, 801–812 (1977).

    Article  CAS  Google Scholar 

  19. Maruyama, K., Natori, R. & Nonomura, Y. Nature 262, 58–60 (1976).

    Article  ADS  CAS  Google Scholar 

  20. Wang, K., McClure, J. & Tu, A. Proc. natn. Acad. Sci. U.S.A. 76, 3698–3702 (1979).

    Article  ADS  CAS  Google Scholar 

  21. Kachar, B. Science (in the press).

  22. Namba, K., Wakabayashi, K. & Mitsui, T. J. molec. Biol. 138, 1–26 (1980).

    Article  CAS  Google Scholar 

  23. Fujime, S. J. Physiol. Soc., Japan 29, 751–759 (1971).

    Article  ADS  Google Scholar 

  24. Wakabayashi, K. & Namba, K. Biophys. Chem. 14, 111–122 (1981).

    Article  CAS  Google Scholar 

  25. Oosawa, F. Polyelectrolyte (Dekker, New York, 1971).

  26. Yanagida, T. & Oosawa, F. J. molec. Biol. 140, 313–320 (1980).

    Article  CAS  Google Scholar 

  27. Podolsky, R. J. & Nolan, A. C. Cold Spring Harb. Symp. quant. Biol. 37, 661 (1973).

    Article  CAS  Google Scholar 

  28. Tonomura, Y. Muscle Proteins, Muscle Contraction and Cation Transport, Chs 3, 13 (University of Tokyo Press, 1972).

    Google Scholar 

  29. Aata, T. & Tonomura, Y. J. Biochem., Tokyo 80, 1353–1358 (1976).

    Article  Google Scholar 

  30. Wakabayashi, K., Namba, K. & Mitsui, T. in Contractile Mechanisms in Muscle (eds Pollack, J. & Sugi, H.) 237–250 (Plenum, New York, 1984).

    Book  Google Scholar 

  31. Tregear, R. T. & Squire, J. M. J. molec. Biol. 77, 279–290 (1973).

    Article  CAS  Google Scholar 

  32. Ishiura, S., Sugita, H., Suzuki, K. & Imahori, K. J. Biochem., Tokyo 86, 579–581 (1979).

    Article  CAS  Google Scholar 

  33. Ishiura, S., Murofushi, H., Suzuki, K. & Imahori, K. J. Biochem., Tokyo 84, 225–230 (1978).

    Article  CAS  Google Scholar 

  34. Danker, P., Low, I., Hasselbach, W. & Wieland, Th. Biochim. biophys. Acta 400, 407–414 (1975).

    Article  Google Scholar 

  35. Yanagida, T. & Oosawa, F. 3rd Int. Congr. Cell Biol., 207 (1984).

  36. Reynard, A. M., Hass, L. F., Jacobsen, D. D. & Boyer, P. D. J. biol. Chem. 236, 2277–2283 (1961).

    CAS  PubMed  Google Scholar 

  37. Hayashi, Y. & Tonomura, Y. J. Biochem., Tokyo 63, 101–118 (1969).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yanagida, T., Arata, T. & Oosawa, F. Sliding distance of actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle. Nature 316, 366–369 (1985). https://doi.org/10.1038/316366a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/316366a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing