Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Osmotic stress mimics effects of vasopressin on learned behaviour

Abstract

It has been suggested that arginine vasopressin (AVP) is involved in the retention of learned responses, in addition to its classical physiological functions of water retention and modulation of blood pressure. AVP administered subcutaneously (s.c.), intraventricularly or intracerebrally can prolong extinction of active avoidance behaviour1,2 and can enhance retention in inhibitory (passive) avoidance3–5. These effects have been interpreted as a direct action of AVP on the central nervous system to facilitate memory consolidation3,4. AVP also has facilitatory effects on cognitive function in humans6, and marked deficits in AVP function have been associated with certain types of psychopathology7. Alternative hypotheses for the behavioural actions of AVP have involved motivational constructs such as arousal8, and our recent work has focused on the role of arousal resulting from the activation of peripheral visceral signals in the behavioural effects of peripherally administered AVP9–12. The development of a specific antagonist for AVP13, 1-deaminopenicillamine-2-O-methyl tyrosine arginine vasopressin (dPTyr(Me)AVP), which can reverse the behavioural effects of exogenously administered AVP9–12, has provided a powerful tool for examining the role of AVP in the behavioural responses produced by physiological challenges known to release vasopressin. However, the relationship between the behavioural effects of exogenously administered AVP and the behavioural function of endogenously released AVP has not been evaluated. We report here that a potent peripheral osmotic stimulus, the intraperitoneal (i.p.) injection of hypertonic saline, at doses known to release AVP both centrally14 and peripherally15, will produce behavioural effects similar to those of exogenously administered AVP. Furthermore, the prolongation of active avoidance induced by this osmotic stimulus is reversed by pretreatment with dPTyr(Me)AVP, suggesting that endogenously released AVP may also produce behavioural effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Walter, R., Van Ree, J. M. & De Wied, D. Proc natn. Acad. Sci. U.S.A. 75, 2493–2496 (1978).

    Article  ADS  CAS  Google Scholar 

  2. Koob, G. F. et al. Regulat. Peptides 1, 153–164 (1981).

    Article  Google Scholar 

  3. Bohus, B., Ader, R. & De Wied, D. Horm. Behav. 3, 191–197 (1972).

    Article  CAS  Google Scholar 

  4. Bohus, B., Kovacs, G. L. & De Wied, D. Brain Res. 157, 414–417 (1978).

    Article  CAS  Google Scholar 

  5. LeBrun, C. J. et al. Life Sci. 35, 1505–1512 (1984).

    Article  CAS  Google Scholar 

  6. Weingartner, H. et al. Science 211, 601–603 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Gold, P. W., Kaye, W., Robertson, G. L. & Ebert, M. New Engl. J. Med. 308, 1117–1123 (1983).

    Article  CAS  Google Scholar 

  8. Sahgal, A. Psychopharmology 83, 215–228 (1984).

    Article  CAS  Google Scholar 

  9. Le Moal, M. et al. Nature 291, 491–493 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Koob, G. F. & Bloom, F. E. A. Rev. Physiol. 44, 571–581 (1982).

    Article  CAS  Google Scholar 

  11. Ettenberg, A., Le Moal, M., Koob, G. F. & Bloom, F. E. Pharmac. Biochem. Behav. 18, 645–647 (1983).

    Article  CAS  Google Scholar 

  12. Ettenberg, A., van der Kooy, D., Le Moal, M., Koob, G. F. & Bloom, F. E. Behav. Brain Res. 7, 231–250 (1983).

    Article  Google Scholar 

  13. Bankowski, K., Manning, M., Haldar, J. & Sawyer, W. H. J. med. Chem. 21, 850–853 (1978).

    Article  CAS  Google Scholar 

  14. Rodriquez, F., Demotes-Mainard, J., Chauveau, J., Poulain, D. & Vincent, J. D. Neurosci. Abstr. 9, 445 (1983).

    Article  Google Scholar 

  15. Dunn, F. L., Brennan, T. J., Nelson, A. E. & Robertson, G. L. J. clin. Invest. 52, 3212–3219 (1973).

    Article  CAS  Google Scholar 

  16. Koob, G. F., Thatcher-Britton, K., Britton, D. R., Roberts, D. C. S. & Bloom, F. E. Physiol. Behav. 33, 479–485 (1984).

    Article  CAS  Google Scholar 

  17. Crofton, J. T. et al. Hypertension 1, 31–38 (1979).

    Article  CAS  Google Scholar 

  18. Zaidi, S. M. A. & Heller, H. J. Endocr. 60, 195–196 (1974).

    Article  CAS  Google Scholar 

  19. Reppert, S. M., Artman, H. G., Swaminathan, S. & Fisher, D. A. Science 213, 1256–1257 (1981).

    Article  ADS  CAS  Google Scholar 

  20. Ermisch, A., Landgraf, K., Heinold, G. & Stuba, G. in Neural Plasticity and Memory Formation (eds Marsan, C. A. & Matthies, H.) 147–152 (Raven, New York, 1982).

    Google Scholar 

  21. Wood, J. H. Neurosurgery 11, 293–305 (1982).

    Article  CAS  Google Scholar 

  22. Pardridge, W. M. A. Rev. Physiol. 45, 73–82 (1983).

    Article  CAS  Google Scholar 

  23. Buijis, R. M. Cell Tissue Res. 192, 423–435 (1978).

    Article  Google Scholar 

  24. Burbach, J. P. H., Kovacs, G. L., De Wied, D., Van Nispen, J. W. & Greven, H. M. Science 221, 1310–1312 (1983).

    Article  ADS  CAS  Google Scholar 

  25. De Wied, D., Gaffori, O., Van Ree, J. M. & De Jong, W. Nature 305, 276–278 (1984).

    Article  ADS  Google Scholar 

  26. Le Moal, M., Koob, G. F., Mormede, P., Dantzer, R. & Bloom, F. E. Soc. Neurosci. Abstr. 8 (1982).

  27. Ettenberg, A. Behav. Brain Res. 14, 201–211 (1984).

    Article  CAS  Google Scholar 

  28. Le Brun, C. J., Le Moal, M., Koob, G. F. & Bloom, F. E. Regulat. Peptides (in the press).

  29. Iversen, S. D. Nature 291, 454 (1981).

    Article  ADS  Google Scholar 

  30. Joyce, E. M. & Koob, G. F. Psychopharmacology 73, 311–313 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koob, G., Dantzer, R., Rodriguez, F. et al. Osmotic stress mimics effects of vasopressin on learned behaviour. Nature 315, 750–752 (1985). https://doi.org/10.1038/315750a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/315750a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing