Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reorganization of α-fodrin induced by stimulation in secretory cells

Abstract

Spectrin is an ubiquitous protein composed of heterodimers with α and β subunits. It was first described in erythrocyte cell membranes (see ref. 1 for review) and subsequently in brain, intestinal brush borders, kidney, liver and adrenals2–8. Brain spectrin (fodrin) α-subunit, responsible for actin binding, has a relative molecular mass (Mr) of 240,000, whereas the β-subunit, involved in membrane attachment, has an Mr of 235,000 (refs 1, 3, 9–13). The membrane of secretory granules from adrenal chromaffin cells increases the viscosity of F-actin solution6,14, and spectrin-like protein is associated with storage granule and plasma membranes6. Here, we report the localization of fodrin in secretory cells using monospecific antibodies against the α-subunit of fodrin using indirect immunofluorescence. We find that the α-subunit forms an intensely stained continuous ring in the subplasmalemmal region of resting chromaffin cells. On stimulation of the cell with nicotine, high potassium or ionophores in the presence of calcium, fodrin forms patches. This aggregation is inhibited by trifluoperazine, hence the entrance of calcium into cells following cell depolarization seems to be the calmodulin-dependent stimulus initiating patch formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Branton, C., Cohen, C. M. & Tiler, J. Cell 24, 24–32 (1981).

    Article  CAS  Google Scholar 

  2. Levine, J. & Willard, M. J. Cell Biol. 90, 631–643 (1981).

    Article  CAS  Google Scholar 

  3. Burridge, K., Kelly, T. & Mangeat, P. J. Cell Biol. 95, 478–486 (1982).

    Article  CAS  Google Scholar 

  4. Hirokawa, N., Cheney, R. E. & Willard, M. Cell 32, 953–965 (1983).

    Article  CAS  Google Scholar 

  5. Lazarides, E. & Nelson, J. Science 220, 1295–1296 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Aunis, D. & Perrin, D. J. Neurochem. 42, 1558–1569 (1984).

    Article  CAS  Google Scholar 

  7. Lazarides, E., Nelson, W. J. & Kasamatsu, T. Cell 36, 269–277 (1984).

    Article  CAS  Google Scholar 

  8. Glenney, J. R., Glenney, P. & Weber, K. J. biol. Chem. 257, 9781–9787 (1982).

    CAS  PubMed  Google Scholar 

  9. Glenney, J. R., Glenney, P. & Weber, K. J. Cell Biol. 96, 1491–1496 (1983).

    Article  CAS  Google Scholar 

  10. Fowler, V. M., Luna, E. J., Hargreaves, W. R., Taylor, D. L. & Branton, D. J. Cell Biol. 88, 388–395 (1981).

    Article  CAS  Google Scholar 

  11. Calvert, R., Bennett, P. & Gratzer, W. Eur. J. Biochem. 107, 355–361 (1980).

    Article  CAS  Google Scholar 

  12. Litman, D., Hsu, C. J. & Marchesi, V. T. J. Cell Sci. 42, 1–22 (1980).

    CAS  PubMed  Google Scholar 

  13. Morrow, J. S., Speicher, D. W., Knowles, W. J., Hsu, C. J. & Marchesi, V. T. Proc. natn. Acad. Sci. U.S.A. 77, 6592–6596 (1980).

    Article  ADS  CAS  Google Scholar 

  14. Fowler, V. M. & Pollard, H. B. Nature 295, 336–339 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Livett, B. G. in Cell Biology of the Secretory Process (ed. Cantin, M.) 309–351 (Karger, Basel, 1984).

    Google Scholar 

  16. Winkler, H. & Carmichael, S. W. in The Secretory Granule (eds Poisner, A. & Trifaro, J. M.) 3–79 (Elsevier, Amsterdam, 1982).

    Google Scholar 

  17. Fenwick, C. M., Fajdiga, P. B., Howe, N. B. S. & Livett, B. G. J. Cell Biol. 76, 12–30 (1978).

    Article  CAS  Google Scholar 

  18. Aunis, D., Guerold, B., Bader, M. F. & Ciesielski-Treska, J. Neuroscience 5, 2261–2277 (1980).

    Article  CAS  Google Scholar 

  19. Kenigsberg, R. L. & Trifaro, J. M. Neuroscience 5, 1457–1566 (1980).

    Article  Google Scholar 

  20. Unsicker, K., Griesser, G. H., Lindmar, R., Loffelholz, K. & Wolf, J. Neuroscience 5, 1445–1460 (1980).

    Article  CAS  Google Scholar 

  21. Phillips, J. H., Burridge, K., Wilson, S. P. & Kirshner, N. J. Cell Biol. 97, 1906–1917 (1983).

    Article  CAS  Google Scholar 

  22. Schneider, A. S., Cline, H. T., Rosenheck, K. & Sonenberg, M. J. Neurochem. 37, 567–575 (1981).

    Article  CAS  Google Scholar 

  23. Knight, D. E. & Kesteven, N. T. Proc. R. Soc. B218, 177–199 (1983).

    ADS  CAS  Google Scholar 

  24. Carlin, R. K., Bartelt, D. C. & Siekevitz, P. J. Cell Biol. 96, 443–448 (1983).

    Article  CAS  Google Scholar 

  25. Kenigsberg, R. L., Côté, A. & Trifaro, J. M. Neuroscience 7, 2277–2286 (1982).

    Article  CAS  Google Scholar 

  26. Langley, O. K. & Aunis, D. Cell Tissue Res. 238, 497–502 (1984).

    Article  CAS  Google Scholar 

  27. Levine, J. & Willard, M. Proc. natn. Acad. Sci. U.S.A. 80, 191–195 (1983).

    Article  ADS  CAS  Google Scholar 

  28. Repasky, E. A., Symer, D. E. & Bankert, R. B. J. Cell Biol. 99, 350–355 (1984).

    Article  CAS  Google Scholar 

  29. Burgoyne, R. D., Geisow, M. J. & Barron, J. Proc. R. Soc. B216, 111–115 (1982).

    ADS  CAS  Google Scholar 

  30. Bader, M. F. & Aunis, D. Neuroscience 8, 165–181 (1983).

    Article  CAS  Google Scholar 

  31. Bader, M. F., Ciesielski-Treska, J., Thiersé, D., Hesketh, J. E. & Aunis, D. J. Neurochem. 37, 917–933 (1981).

    Article  CAS  Google Scholar 

  32. Davis, J. & Bennett, V. J. biol. Chem. 258, 7757–7766 (1983).

    CAS  PubMed  Google Scholar 

  33. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  34. Towbin, M., Staehelin, T. & Gordon, J. Proc. natn. Acad. Sci. U.S.A. 76, 4350–4354 (1979).

    Article  ADS  CAS  Google Scholar 

  35. Fuller, G. H., Brinkley, B. R. & Boughter, J. M. Science 187, 948–951 (1975).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perrin, D., Aunis, D. Reorganization of α-fodrin induced by stimulation in secretory cells. Nature 315, 589–592 (1985). https://doi.org/10.1038/315589a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/315589a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing