Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Acetylcholine receptor-aggregating factor is similar to molecules concentrated at neuromuscular junctions

Abstract

The basal lamina in the synaptic cleft of the vertebrate skeletal neuromuscular junction contains molecules that direct the formation of synaptic specializations in regenerating axons and muscle fibres1–4. We have undertaken a series of experiments aimed at identifying and characterizing the molecules responsible for the formation of one of these specializations, the aggregates of acetylcholine receptors (AChRs) in the muscle fibre plasma membrane. We began by preparing an insoluble, basal lamina-containing fraction from Torpedo californica electric organ, a tissue which has a far higher concentration of cholinergic synapses than muscle, and showing that this fraction caused AChRs on cultured chick myotubes to aggregate5–7. A critical step is learning whether or not the electric organ factor is similar to the receptor-aggregating molecule in the basal lamina at the neuromuscular junction. The importance of this problem is emphasized by reports that clearly non-physiological agents, such as positively charged latex beads8, can cause AChR aggregation on cultured muscle cells. We have already shown that Torpedo muscle contains an AChR-aggregating factor similar to that of electric organ, although in much lower amounts6. Here we demonstrate, using monoclonal antibodies, that the AChR-aggregating factor in our extracts of electric organ is, in fact, antigenically related to molecules concentrated in the synaptic cleft at the neuromuscular junction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sanes, J. R., Marshall, L. M. & McMahan, U. J. J. Cell Biol. 78, 176–198 (1978).

    Article  CAS  Google Scholar 

  2. Burden, S. J., Sargent, P. B. & McMahan, U. J. J. Cell Biol. 82, 412–425 (1979).

    Article  CAS  Google Scholar 

  3. McMahan, U. J. & Slater, C. R. J. Cell Biol. 98, 1453–1473 (1984).

    Article  CAS  Google Scholar 

  4. Anglister, L. & McMahan, U. J. Soc. Neurosci. Abstr. 10, Pt 1, 281 (1984).

    Google Scholar 

  5. Rubin, L. L., Gordon, A. S. & McMahan, U. J. Soc. Neurosci. Abstr. 6, 330 (1980).

    Google Scholar 

  6. Godfrey, E. W., Nitkin, R. M., Wallace, B. G., Rubin, L. L. & McMahan, U. J. J. Cell Biol. 99, 615–627 (1984).

    Article  CAS  Google Scholar 

  7. Nitkin, R. M., Wallace, B. G., Spira, M. E., Godfrey, E. W. & McMahan, U. J. Cold Spring Harb. Symp. quant. Biol. 48, 653–665 (1983).

    Article  CAS  Google Scholar 

  8. Peng, H. B. & Cheng, P.-C. J. Neurosci. 2, 1760–1774 (1982).

    Article  CAS  Google Scholar 

  9. Timpl, R. et al. J. biol. Chem. 254, 9933–9937 (1979).

    CAS  PubMed  Google Scholar 

  10. Sanes, J. R. J. Cell Biol. 93, 442–451 (1982).

    Article  CAS  Google Scholar 

  11. Christian, C. M. et al. Proc. natn. Acad. Sci. U.S.A. 75, 4011–4105 (1978).

    Article  ADS  CAS  Google Scholar 

  12. Bauer, H. C. et al. Brain Res. 209, 395–404 (1981).

    Article  CAS  Google Scholar 

  13. Kalcheim, C., Vogel, Z. & Duksin, D. Proc. natn. Acad. Sci. U.S.A. 79, 3077–3081 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Podleski, T. R. et al. Proc. natn. Acad. Sci. U.S.A. 75, 2035–2039 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Jessell, T. M., Siegel, R. E. & Fischbach, G. D. Proc. natn. Acad. Sci. U.S.A. 76, 5397–5401 (1979).

    Article  ADS  CAS  Google Scholar 

  16. Markelonis, G. J., Oh, T. H., Eldefrawi, M. E. & Guth, L. Devl Biol. 89, 353–361 (1982).

    Article  CAS  Google Scholar 

  17. Sanes, J. R., Feldman, D. H., Cheney, J. M. & Lawrence, J. C. Jr J. Neurosci. 4, 464–473 (1984).

    Article  CAS  Google Scholar 

  18. McMahan, U. J., Sanes, J. R. & Marshall, L. M. Nature 271, 172–174 (1978).

    Article  ADS  CAS  Google Scholar 

  19. Anderson, M. J. & Fambrough, D. M. J. Cell Biol. 97, 1396–1411 (1983).

    Article  CAS  Google Scholar 

  20. Sanes, J. R. & Hall, Z. W. J. Cell Biol. 83, 357–370 (1979).

    Article  CAS  Google Scholar 

  21. Vogel, Z. et al. J. Neurosci. 3, 1058–1068 (1983).

    Article  CAS  Google Scholar 

  22. Wallace, B. G. et al. Nature 315, 574–577 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Oi, V. T. & Herzenberg, L. A. in Selected Methods in Cellular Immunology (eds Mishell, B. B. & Shiigi, S. M.) 351–372 (Freeman, San Francisco, 1980).

    Google Scholar 

  24. Zacks, S. I. The Motor Endplate (Krieger, Huntington, 1973).

    Google Scholar 

  25. Sealock, R. & Kavookjian, A. Brain Res. 190, 81–93 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fallon, J., Nitkin, R., Reist, N. et al. Acetylcholine receptor-aggregating factor is similar to molecules concentrated at neuromuscular junctions. Nature 315, 571–574 (1985). https://doi.org/10.1038/315571a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/315571a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing