Differential activity of maternally and paternally derived chromosome regions in mice

Abstract

Although both parental sexes contribute equivalent genetic information to the zygote, in mammals this information is not necessarily functionally equivalent. Diploid parthenotes possessing two maternal genomes are generally inviable1, embryos possessing two paternal genomes in man may form hydatidiform moles2, and nuclear transplantation experiments in mice have shown that both parental genomes are necessary for complete embryogenesis3–6. Not all of the genome is involved in these parental effects, however, because zygotes with maternal or paternal disomy for chromosomes 1, 4, 5, 9, 13, 14 and 15 of the mouse survive normally7,8. On the other hand, only the maternal X chromosome is active in mouse extraembryonic membranes9, maternal disomy 6 is lethal7, while non-complementation of maternal duplication/paternal deficiency or its reciprocal for regions of chromosome 2, 8 and 17 has been recognized10–12. We report that animals with maternal duplication/paternal deficiency and its reciprocal for each of two particular chromosome regions show anomalous phenotypes which depart from normal in opposite directions, suggesting a differential functioning of gene loci within these regions. A further example of non-complementation lethality is also reported.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Markert, C. L. J. Hered. 73, 390–397 (1982).

    CAS  Article  Google Scholar 

  2. 2

    Kajii, T. & Ohama, K. Nature 268, 633–634 (1977).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Surani, M. A. H., Barton, S. C. & Norris, M. L. Nature 308, 548–550 (1984).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Barton, S. C., Surani, M. A. H. & Norris, M. L. Nature 311, 374–376 (1984).

    ADS  CAS  Article  Google Scholar 

  5. 5

    McGrath, J. & Solter, D. J. exp. Zool. 228, 355–362 (1983); Nature 308, 550–551 (1984); Cell 37, 179–183 (1984).

    CAS  Article  Google Scholar 

  6. 6

    Mann, J. R. & Lovell-Badge, R. H. Nature 310, 66–67 (1984).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Lyon, M. F. in Radiation-Induced Damage in Man (ed. Ishihara, T.) 327–346 (Liss, New York, 1983).

    Google Scholar 

  8. 8

    Lyon, M. F., Ward, H. C. & Simpson, G. M. Genet. Res. 26, 283–295 (1976).

    Article  Google Scholar 

  9. 9

    Tagaki, N. in Preferential Inactivation of the Paternally Derived X Chromosome in Mice (ed. Russell, L. B.) 341–360 (Plenum, New York, 1978).

    Google Scholar 

  10. 10

    Searle, A. G. & Beechey, C. V. Cytogenet. Cell Genet. 20, 282–303 (1978).

    CAS  Article  Google Scholar 

  11. 11

    Lyon, M. F. & Glenister, P. H. Genet. Res. 29, 83–92 (1977).

    CAS  Article  Google Scholar 

  12. 12

    Johnston, D. R. Genet. Res. 24, 207–213 (1975).

    Article  Google Scholar 

  13. 13

    Cattanach, B. M. & Moseley, H. Cytogenet. Cell Genet. 12, 264–287 (1973).

    CAS  Article  Google Scholar 

  14. 14

    Crouse, H. V. Genetics 45, 1429–1443 (1960).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Brown, S. & Chandra, H. S. in Cell Biology Vol. 1 (eds Golstein, L. & Prescott, D. M.) 109–189 (Academic, New York, 1977).

    Google Scholar 

  16. 16

    Lyon, M. F. Nature 190, 372–373 (1961).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Burgoyne, P. S. in Basic Reproductive Medicine Vol. 1 (eds Hamilton, D. & Naftolin, F.) 1–33 (MIT Press, 1981).

    Google Scholar 

  18. 18

    Ohno, S. Wistar Inst. Symp. Monogr. 9, 137–150 (1969).

    CAS  PubMed  Google Scholar 

  19. 19

    Schmidtke, J., Kuhl, P. & Engel, W. Nature 260, 319–320 (1976).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Klose, J. & Wolf, U. Biochem. Genet. 4, 87–92 (1970).

    CAS  Article  Google Scholar 

  21. 21

    Whitt, G. S., Cho, P. L. & Childers, W. F. J. exp. Zool. 179, 271–282 (1972).

    CAS  Article  Google Scholar 

  22. 22

    Whitt, G. S., Childers, W. F. & Cho, P. L. J. Hered. 64, 55–61 (1973).

    CAS  Article  Google Scholar 

  23. 23

    Krietsch, W. K. G. et al. Differentiation 23, 141–144 (1982).

    CAS  Article  Google Scholar 

  24. 24

    Green, M. C. in Genetic Variants and Strains of the Laboratory Mouse (ed. Green, M. C.) 8–278 (Gustav Fischer, Stuttgart, 1981).

    Google Scholar 

  25. 25

    Bartke, A. Gen. comp. Endocr. 5, 418–426 (1965).

    CAS  Article  Google Scholar 

  26. 26

    Buckle, V. J. et al. Clin. Genet. 26, 1–11 (1984).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Owerbach, D., Rutter, W. J., Martial, J. A., Baxter, J. D. & Shows, T. B. Science 209, 289–292 (1980).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Schultz, L. D., Sweet, H. O., Davisson, M. T. & Coman, D. R. Nature 297, 402–404 (1982).

    ADS  Article  Google Scholar 

  29. 29

    Joyner, A. L. et al. Nature 314, 173–175 (1985).

    ADS  CAS  Article  Google Scholar 

  30. 30

    Rabin, M. et al. Nature 314, 175–178 (1985).

    ADS  CAS  Article  Google Scholar 

  31. 31

    McGinnies, W., Hart, C. P., Gehring, W. J. & Ruddle, F. H. Cell 38, 675–680 (1984).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cattanach, B., Kirk, M. Differential activity of maternally and paternally derived chromosome regions in mice. Nature 315, 496–498 (1985). https://doi.org/10.1038/315496a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.