Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Does the ocean–atmosphere system have more than one stable mode of operation?

Abstract

The climate record obtained from two long Greenland ice cores reveals several brief climate oscillations during glacial time. The most recent of these oscillations, also found in continental pollen records, has greatest impact in the area under the meteorological influence of the northern Atlantic, but none in the United States. This suggests that these oscillations are caused by fluctuations in the formation rate of deep water in the northern Atlantic. As the present production of deep water in this area is driven by an excess of evaporation over precipitation and continental runoff, atmospheric water transport may be an important element in climate change. Changes in the production rate of deep water in this sector of the ocean may push the climate system from one quasi-stable mode of operation to another.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Berner, W., Stauffer, B. & Oeschger, H. Nature 275, 53–55 (1979).

    Google Scholar 

  2. 2

    Delmas, R., Ascencio, J-M. & Legrang, M. Nature 284, 155–157 (1980).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Neftel, A., Oeschger, H., Schwander, J., Stauffer, B. & Zumbrunn, R. Nature 295, 220–233 (1982).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Broecker, W. & Takahashi, T. Climate Processes and Climate Sensitivity (ed. Hansen, J. & Takahashi, T.) 314–326 (Geophys. Monogr. 29, Am. Geophys. U. 1984).

    Book  Google Scholar 

  5. 5

    Sarmiento, J. & Toggweiler, R. Nature 308, 621–624 (1984).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Siegenthaler, U. & Wenk, Th. Nature 308, 624–626 (1984).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Knox, F. & McElroy, M. J. geophys. Res. 89, 4629–4637 (1984).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Emiliani, C. J. Geol. 63, 538–578 (1955).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Broecker, W. & Van Donk, J. Rev. Geophys. space Sci. 8, 169–198 (1970).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Shackleton, N. & Opdyke, N. Quat. Res. 3, 39–55 (1973).

    CAS  Article  Google Scholar 

  11. 11

    Hays, J., Imbrie, J. & Shackleton, N. Science 194, 1121–1132 (1981).

    ADS  Article  Google Scholar 

  12. 12

    Imbrie, J. et al. Milankovitch & Climate I (eds Berger, A. et al. ) 269–305 (Reidel, Dordrecht, 1984).

    Google Scholar 

  13. 13

    Imbrie, J. & Imbrie, J. Z. Science 207, 943–953 (1980).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Dansgaard, W. et al. Science 218, 1273–1277 (1982).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Dansgaard, W. et al. Am. Geophys. Un. Monogr. Ser. 29 (M. Ewing Symp. 3), 288–298 (1984).

    Google Scholar 

  16. 16

    Beer, J. Ann. Glaciol. 5, 16–17 (1984).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Finkel, R. & Langway, C. Earth planet. Sci. Lett. (in the press).

  18. 18

    Siegenthaler, U., Eicher, U., Oeschger, H. & Dansgaard, W. Ann. Glaciol 5, 149–152 (1984).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Dansgaard, W., Johnsen, S., Moller, J. & Langway, C. Science 166, 377–381 (1969).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Oeschger, H. et al. Am. Geophys. Un. Monogr. Ser. 29 (M Ewing Symp. 3), 299–306 (1984).

    Google Scholar 

  21. 21

    Stauffer, B., Hofer, H., Oeschger, H., Schwander, J. & Siegenthaler, U. Ann. Glaciol. 5, 160–164 (1984).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Broecker, W. in Climate Variations and Variability: Facts and Theory (ed. Berger, A.) 109–120 (Reidel, Dordrecht, 1981).

    Google Scholar 

  23. 23

    Broecker, W. Prog. Oceanogr. 11, 151–197 (1982).

    ADS  Article  Google Scholar 

  24. 24

    Broecker, W. Geochim. Acta 46, 1689–1705 (1982).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Broecker, W., Mix, A., Andree, M. & Oeschger, H. Nucl. Instrum. Meth. Phys. Res. B5, 331–339 (1984).

    ADS  Article  Google Scholar 

  26. 26

    Andree, M. et al. Nucl. Instrum. Meth. Phys. Res. B5, 340–345 (1984).

    ADS  Article  Google Scholar 

  27. 27

    Boyle, E. & Keigwin, L. Science 218, 784–787 (1982).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Duplessy, J., Chenouard, L. & Vila, F. Science 188, 1208–1209 (1975).

    ADS  CAS  Article  Google Scholar 

  29. 29

    Kellogg, T., Duplessy, J. & Shackleton, N. Boreas 7, 61–73 (1978).

    Article  Google Scholar 

  30. 30

    Shackleton, N. The Fate of Fossil Fuel CO2 (eds Andersen, N. & Malahoff, A.) 401–427 (Plenum, New York, 1977).

    Book  Google Scholar 

  31. 31

    Shackleton, N., Imbrie, J. & Hall, M. A. Earth planet. Sci. Lett. 65, 233–244 (1983).

    ADS  CAS  Article  Google Scholar 

  32. 32

    Ruddiman, W. F. & Mclntyre, A. Palaeogeogr., Palaeoclimatol., Palaeoecol. 35, 145–214 (1981).

    CAS  Article  Google Scholar 

  33. 33

    Watts, W. Studies in the Late-Glacial of North-west Europe (eds Lowe, J., Gray, J. & Robinson, J.) 1–21 (Pergamon, Oxford, 1980).

    Google Scholar 

  34. 34

    Wright, H. (ed.) Late-Quaternary Environments of the United States Vols 1 and 2 (University of Minnesota Press, 1983).

  35. 35

    Anderson, T. & Macpherson, J. 6th IPC Conf. (Calgary, 1984).

  36. 36

    Mott, J., Grant, D., Stea, R. & Ochietti, S. 6th IPC Conf. (Calgary, 1984).

  37. 37

    Mercer, J. Arctic Alp. Res. 6, 227–236 (1969).

    Article  Google Scholar 

  38. 38

    Van der Hammen, T., Barelds, J., de Jong, H. & De Veer, A. A. Palaeogeogr., Palaeoclimatol., Palaeoecol. 32, 247–340 (1981).

    Article  Google Scholar 

  39. 39

    Mercer, J. H. & Palacios, O. Geology 5, 600–604 (1977).

    ADS  Article  Google Scholar 

  40. 40

    Wright, H. E. Quat. Res. 21, 275–285 (1984).

    Article  Google Scholar 

  41. 41

    Heusser, C. J. Quat. Res. 22, 77–90 (1984).

    Article  Google Scholar 

  42. 42

    Burrows, C. J. Palaeogeogr., Palaeoclimatol., Palaeoecol. 27, 287–347 (1979).

    Article  Google Scholar 

  43. 43

    Johnsen, S., Dansgaard, W., Clausen, H. & Langway, C. Nature 235, 429–434 (1972).

    ADS  CAS  Article  Google Scholar 

  44. 44

    Broecker, W. J. geophys. Res. 4, 3218–3226 (1979).

    ADS  Article  Google Scholar 

  45. 45

    Climap Project Members Geol. Soc. Am. Map Chart Ser. MC-36 (1981).

  46. 46

    Peixoto, J. & Oort, A. in Variations in the Global Water Budget (eds Street-Perott, A. et al. ) 5–65 (Reidel, Dordrecht, 1983).

    Book  Google Scholar 

  47. 47

    Warren, B. J. mar. Res. 41, 327–347 (1983).

    Article  Google Scholar 

  48. 48

    Stommel, H. Tellus 13, 224–230 (1961).

    ADS  Article  Google Scholar 

  49. 49

    Rooth, Claes. Prog. Oceanogr. 11, 131–149 (1982).

    ADS  Article  Google Scholar 

  50. 50

    Baumgartner, A. & Reichel, E. Die Weltwasserbilanz Munich (1975).

  51. 51

    Berger, A. Astr. Astrophys. 51, 127–135 (1977).

    ADS  Google Scholar 

  52. 52

    Eicher, U., Siegenthaler, U. & Wegmuller, S. Quat. Res. 15, 160–170 (1981).

    CAS  Article  Google Scholar 

  53. 53

    Ruddiman, W., Sancetta, C. & Mclntyre, A. Phil. Trans. R. Soc. B280, 119–142 (1977).

    Article  Google Scholar 

  54. 54

    Birks, H. & Mathewes, R. New Phytol. 80, 455–484 (1978).

    Article  Google Scholar 

  55. 55

    Eicher, U. & Siegenthaler, U. Physische Geographie 1, 103–110 (1982).

    Google Scholar 

  56. 56

    Denton, G. & Hughes, T. The Last Great Ice Sheets (Wiley, New York, 1981).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Broecker, W., Peteet, D. & Rind, D. Does the ocean–atmosphere system have more than one stable mode of operation?. Nature 315, 21–26 (1985). https://doi.org/10.1038/315021a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing