Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Levels of c-myc oncogene mRNA are invariant throughout the cell cycle

Abstract

The steady-state messenger RNA levels of several genes increase when cells are stimulated to proliferate1–4. The transcripts from one such gene, the proto-oncogene c-myc, increase approximately 20-fold shortly after cells are stimulated to proliferate and then decline before the onset of DNA synthesis1,5. It has been inferred from these data that expression of c-myc may be specific to the G1 portion of the cell cycle5. Alternatively, this transient increase in c-myc mRNA following the stimulation of quiescent cells could be the result of an activational event that renders the cells competent to enter the cell cycle. To distinguish between these possibilities, we performed experiments to determine whether the amount of c-myc mRNA fluctuates during the cell cycle in cells that are under constant stimulation to proliferate. Although c-myc mRNA does undergo a transient increase within 2 h of serum stimulation of quiescent serum-deprived cells, our results show that the level of c-myc mRNA is constant throughout the cell cycle and does not diminish in density-arrested cells maintained in the presence of serum growth factors. In contrast to c-myc, the mRNA levels of two other genes whose expression has been associated with cellular proliferation6–8 do show consistent variations within the cell cycle. Both thymidine kinase (TK) and histone 2b (H2b) mRNA levels increase during S phase in continuously growing cells and decrease when cell replication ceases in density-arrested cultures. Therefore, the transient increase in c-myc transcription following the activation of quiescent cells is not due to the type of cell cycle-dependent regulation characteristic of the TK and H2b genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kelly, K., Cochran, B. H., Stiles, C. D. & Leder, P. Cell 35, 603–610 (1983).

    Article  CAS  Google Scholar 

  2. Greenberg, M. E. & Ziff, E. B. Nature 311, 433–438 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Goyette, M., Petropoulos, C. J., Shank, P. R. & Fausto, N. Molec. cell. Biol. 4, 1493–1498 (1984).

    Article  CAS  Google Scholar 

  4. Campisi, J. et al. Cell 36, 241–247 (1984).

    Article  CAS  Google Scholar 

  5. Kelly, K., Cochran, B., Stiles, C. & Leder, P. Curr. Topics Microbiol. Immun. 113, 117–126 (1984).

    CAS  Google Scholar 

  6. Johnson, L. F., Rao, L. G. & Muench, A. J. Expl Cell Res. 138, 79–85 (1982).

    Article  CAS  Google Scholar 

  7. Groudine, M. & Casimir, C. Nucleic Acids Res. 12, 1427–1446 (1984).

    Article  CAS  Google Scholar 

  8. Sittman, D. B., Graves, R. A. & Marzluff, W. F. Proc. natn. Acad. Sci. U.S.A. 80, 1849–1853 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Alterman, R.-B. M. et al. Molec. cell. Biol. 4, 123–132 (1984).

    Article  CAS  Google Scholar 

  10. Thompson, C. B. et al. J. Immun. 133, 2333–2342 (1984).

    CAS  PubMed  Google Scholar 

  11. Grdina, D. J. et al. Cell Tissue Kinetics 17, 223–236 (1984).

    CAS  PubMed  Google Scholar 

  12. Schubach, W. & Groudine, M. Nature 307, 702–708 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J. & Rutter, W. J. Biochemistry 18, 5294–5299 (1979).

    Article  CAS  Google Scholar 

  14. Cleveland, D. W. et al. Cell 20, 95–105 (1980).

    Article  CAS  Google Scholar 

  15. Osley, M. A. & Hereford, L. Proc. natn. Acad. Sci. U.S.A. 79, 7689–7693 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Zweidler, A. in Histone Genes: Structure, Organization & Regulation (eds Stein, G. S., Stein, J. L. & Marzluff, W. F.) 339–371 (Wiley, New York, 1984).

    Google Scholar 

  17. Farmer, S. R., Wan, K. M., Ben-Ze'ev, A. & Penman, S. Molec. cell. Biol. 3, 182–189 (1983).

    Article  CAS  Google Scholar 

  18. Pledger, W. J., Stiles, C. D., Antoniades, H. N. & Scher, C. D. Proc. natn. Acad. Sci. U.S.A. 74, 4481–4485 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Chen, C. H., Chanh, T. C. & Cooper, M. D. Eur. J. Immun. 14, 385–391 (1984).

    Article  CAS  Google Scholar 

  20. Sekaly, R. P., Ceredig, R. & MacDonald, H. R. J. Immun. 131, 1085–1089 (1983).

    CAS  PubMed  Google Scholar 

  21. Westin, E. H. et al. Proc. natn. Acad. Sci. U.S.A. 79, 2490–2494 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Hann, S. R., Thompson, C. B. & Eisenman, R. N. Nature 314, 366–369 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Schlosser, C. A., Steglich, C., DeWet, J. R. & Scheffler, I. E. Proc. natn. Acad. Sci. U.S.A. 78, 1119–1123 (1981).

    Article  ADS  CAS  Google Scholar 

  24. Krieg, P. A. & Melton, D. A. Nature 308, 203–206 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, C., Challoner, P., Neiman, P. et al. Levels of c-myc oncogene mRNA are invariant throughout the cell cycle. Nature 314, 363–366 (1985). https://doi.org/10.1038/314363a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/314363a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing