Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Metallothionein gene cluster is split by chromosome 16 rearrangements in myelomonocytic leukaemia

Abstract

The metallothioneins (MTs) are a family of proteins of low relative molecular mass which bind heavy-metal ions1. MTs exist in several molecular forms (MT-I, MT-II) and are encoded by a multi-gene family containing at least 14 closely related genes and pseudogenes1,2. These proteins function in the regulation of trace-metal metabolism, the storage of these ions in the liver, and as a protective mechanism against heavy-metal toxicity3. Somatic cell hybridization has shown that most MT genes, including the functional MT genes (MT1A, MT1B, MT2A), lie on human chromosome 16 (refs 4, 5). Using in situ hybridization6,7, we have now localized the MT genes to band q22 of chromosome 16. This chromosomal band is also a breakpoint in two specific rearrangements, the inv(16)(p13q22) (ref. 8) and t(16; 16)(pl3;q22) rearrangements, found in a subgroup of patients with acute myelomonocytic leukaemia (AMML). Hybridization of a MT probe to malignant cells from two patients with an inv(16) showed labelled sites on both arms of the inverted chromosome, indicating that the breakpoint at 16q22 splits the MT gene cluster. Similar results were obtained when this probe was hybridized to metaphase cells from two patients with a t(16; 16). These results suggest that the MT genes or their regulatory regions9 may function as an ‘activating’ sequence for an as yet unidentified cellular gene located at 16pl3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kagi, J. H. R. & Nordberg M. (eds) Experientia Suppl. 34 (1979).

  2. Karin, M. & Richards, R. I. Nature 299, 797–802 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Durnam, D. M. & Palmiter, R. D. J. biol. Chem. 256, 2268–2272 (1981).

    Google Scholar 

  4. Schmidt, C. J., Hamer, D. H. & McBride, O. W. Science 224, 1104–1106 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Karin, M. et al. Proc. natn. Acad. Sci. U.S.A. 81, 5494–5498 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Harper, M. E. & Saunders, G. F. Chromosoma 83, 431–439 (1981).

    Article  CAS  Google Scholar 

  7. Le Beau, M. M., Westbrook, C. A., Diaz, M. O. & Rowley, J. D. Nature 312, 70–71 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Le Beau, M. M. et al. New Engl. J. Med. 309, 630–636 (1983).

    Article  CAS  Google Scholar 

  9. Karin, M. et al. Nature 308, 513–519 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Karin, M. & Richards, R. I. Nucleic Acids Res. 10, 3165–3173 (1982).

    Article  CAS  Google Scholar 

  11. Arthur, D. C. & Bloomfield, C. D. Blood 61, 994–998 (1983).

    CAS  PubMed  Google Scholar 

  12. Testa, J. R., Hogge, D. E., Misawa, S. & Zand-Parsa, N. New Engl. J. Med. 310, 468–469 (1984).

    Article  CAS  Google Scholar 

  13. de la Chapelle, A. & Lahtinen, R. New Engl. J. Med. 308, 1394 (1983).

    Google Scholar 

  14. Gustafson, P. E. et al. Scand. J. Haemat. 4, 371–379 (1967).

    PubMed  Google Scholar 

  15. Barnes, D. & Sato, G. Cell 22, 649–655 (1980).

    Article  CAS  Google Scholar 

  16. Richards, R. I., Heguy, A. & Karin, M. Cell 37, 263–272 (1984).

    Article  CAS  Google Scholar 

  17. Le Beau, M. M. & Rowley, J. D. Nature 308, 607–608 (1984).

    Article  ADS  CAS  Google Scholar 

  18. Yunis, J. Science 221, 227–236 (1983).

    Article  ADS  CAS  Google Scholar 

  19. Arthur, D. C. & Bloomfield, C. D. Blood 62, Suppl. 1, 165a (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Beau, M., Diaz, M., Karin, M. et al. Metallothionein gene cluster is split by chromosome 16 rearrangements in myelomonocytic leukaemia. Nature 313, 709–711 (1985). https://doi.org/10.1038/313709a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/313709a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing