Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Control of haemoglobin switching by a developmental clock?

Abstract

The pattern of haemoglobin production changes at the embryonic, fetal and postnatal stages of human development, reflecting the expression of different globin genes in both the α-like and β-like gene clusters1,2. Recent studies have identified alterations in the state of DNA methylation3 and sensitivity to nuclease digestion4 associated with developmental expression of the globin genes in red blood cell precursors, but the mechanism initiating these changes remains unknown. Despite the screening of large numbers of blood samples from newborn infants5,6, no mutants have been found which affect the timing of these changes (with one possible exception involving a chromosomal translocation7), thus necessitating alternative approaches to analysing the cellular basis for the timing of haemoglobin switching. Although many mechanisms are possible, the initiation of the switch from fetal to adult haemoglobin could be regulated essentially either by a developmental clock inherent to haematopoietic stem cells or by an inductive enrivonment8,9, and in an attempt to distinguish between these possibilities, we have transplanted sheep fetal haematopoietic tissue into adult animals. Although previous experiments of this type produced conflicting results10–12, the accumulated results presented here demonstrate that the pattern of haemoglobin production after transplantation is determined largely by the gestational age of the fetal donor cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wood, W. G., Clegg, J. B. & Weatherall, D. J. Prog. Hemat. 11, 43–90 (1977).

    Google Scholar 

  2. Wood, W. G. & Weatherall, D. J. Biochem. J. 215, 1–10 (1983).

    Article  CAS  Google Scholar 

  3. Mavilio, F. et al. Proc. natn. Acad. Sci. U.S.A. 80, 6907–6911 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Groudine, M., Kohwi-Shigematsu, T., Gelinas, R., Stamatoyannopoulos, G. & Papayannopoulou, T. Proc. natn. Acad. Sci. U.S.A. 80, 7551–7555 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Huisman, T. H. J. & Jonxis, J. H. P. The Hemoglobinopathies (Dekker, New York, 1977).

    Google Scholar 

  6. Yoshinaka, H. et al. Hemoglobin 6, 37–42 (1982).

    Article  CAS  Google Scholar 

  7. Weller, S. D. V., Apley, J. & Raper, A. B. Lancet i, 777–779 (1966).

    Article  Google Scholar 

  8. Wood, W. G. Adv. physiol. Sci. 6, 101–113 (1981).

    CAS  Google Scholar 

  9. Stamatoyannopoulos, G. et al. in Hemoglobin in Development and Differentiation (eds Stamatoyannopoulos, G. & Nienhuis, A.) 287–305 (Liss, New York, 1981).

    Google Scholar 

  10. Zanjani, E. D., McGlave, P. B., Bhakthavathsalan, A. & Stamatoyannopoulos, G. Nature 280, 495–496 (1979).

    Article  ADS  CAS  Google Scholar 

  11. Bunch, C., Wood, W. G., Weatherall, D. J., Robinson, J. S. & Corp, M. J. Br. J. Haemat. 49, 325–336 (1981).

    Article  CAS  Google Scholar 

  12. Wood, W. G. & Bunch, C. in Globin Gene Expression and Hematopoietic Differentiation (eds Stamatoyannopoulos, G. & Nienhuis, A.) 511–521 (Liss, New York, 1983).

    Google Scholar 

  13. Weatherall, D. J., Clegg, J. B. & Wood, W. G. Lancet ii, 660–663 (1976).

    Article  Google Scholar 

  14. Fraser, I. D. & Raper, A. B. Archs Dis. Childh. 37, 289–296 (1962).

    Article  CAS  Google Scholar 

  15. Dan, M. & Hagiwara, A. Expl Cell Res. 46, 596–598 (1967).

    Article  CAS  Google Scholar 

  16. Kamada, M. Yokohama med. Bull. 20, 127–135 (1969).

    CAS  PubMed  Google Scholar 

  17. Kidoguchi, K., Ogawa, M., Karam, J. D., McNeil, J. S. & Fitch, M. S. Blood 53, 519–522 (1979).

    CAS  PubMed  Google Scholar 

  18. Comi, P. et al. Proc. natn. Acad. Sci. U.S.A. 77, 362–365 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Wood, W. G. in Biochemical Development of the Fetus and Neonate (ed. Jones, C. T.) 127–162 (Elsevier, Amsterdam, 1982).

    Google Scholar 

  20. Keating, A. et al. Nature 298, 280–283 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Potter, C. G., Rowell, A. C. & Weatherall, D. J. Clin. Lab. Haemat. 3, 245–255 (1981).

    Article  CAS  Google Scholar 

  22. Widmer, H. J., Hosbach, H. A. & Weber, R. Devl Biol. 99, 50–60 (1983).

    Article  CAS  Google Scholar 

  23. Kliehauer, E., Braun, H. & Betke, K. Nature 35, 635–636 (1957).

    Google Scholar 

  24. Wood, W. G. et al. Nature 264, 799–801 (1976).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, W., Bunch, C., Kelly, S. et al. Control of haemoglobin switching by a developmental clock?. Nature 313, 320–323 (1985). https://doi.org/10.1038/313320a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/313320a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing