Letter | Published:

Restoration of circadian behavioural rhythms by gene transfer in Drosophila

Naturevolume 312pages752754 (1984) | Download Citation



The per locus of Drosophila melanogaster has a fundamental role in the construction or maintenance of a biological clock. Three classes of per mutations have been identified: perl mutants have circadian behavioural rhythms with a 29-h rather than a 24-h period, pers mutants have short-period rhythms of 19 h, and per0 mutants have no detectable circadian rhythms1–4. Each of these mutations has a corresponding influence on the 55-s periodicity of male courtship song5. Long-and short-period circadian rhythm phenotypes can also be obtained by altering the dosage of the wild-type gene4: for example, females carrying only one dose of this X-linked gene have circadian rhythms with periodicities about 1 h longer than those carrying two doses. In a previous report6, cloned DNA was used to localize several chromosomal rearrangement breakpoints that alter per locus function. The rearrangements all affected a 7-kilobase (kb) interval that encodes a 4.5-kb poly(A)+ RNA. We report here that when a 7.1-kb fragment from a per+ fly, including the sequences encoding the 4.5-kb transcript, is introduced into the genome of a per0 (arrhythmic) fly by P element-mediated transformation, circadian rhythmicity of behaviour such as eclosion and locomotor activity is restored. The transforming DNA complements per locus deletions and is transcribed, forming a single 4.5-kb poly(A)+ RNA comparableto that produced by wild-type flies.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Konopka, R. & Benzer, S. Proc. natn. Acad. Sci. U.S.A. 68, 2112–2116 (1971).

  2. 2

    Young, M. W. & Judd, B. H. Genetics 88, 723–742 (1978).

  3. 3

    Smith, R. F. & Konopka, R. J. Molec. gen. Genet. 183, 243–251 (1981).

  4. 4

    Smith, R. F. & Konopka, R. J. Molec. gen. Genet. 185, 30–36 (1982).

  5. 5

    Kyriacou, C. P. & Hall, J. C. Proc. natn. Acad. Sci. U.S.A. 77, 6729–6733 (1980).

  6. 6

    Bargiello, T. A. & Young, M. W. Proc. natn. Acad. Sci. U.S.A. 81, 2142–2146 (1984).

  7. 7

    Rubin, G. M. & Spradling, A. C. Nucleic Acids Res. 11, 6341–6351 (1983).

  8. 8

    Spradling, A. C. & Rubin, G. M. Science 218, 341–347 (1982).

  9. 9

    Spradling, A. C. & Rubin, G. M. Cell 34, 47–57 (1983).

  10. 10

    Goldberg, D. A., Posakony, J. W. & Maniatis, T. Cell 34, 59–73 (1983).

  11. 11

    Enright, J. T. in Handbook of Behavioral Neurobiology (ed. Aschoff, J.) 21–39 (Plenum, New York, 1981).

  12. 12

    Jackson, F. R. J. Neurogenet. 1, 3–15 (1983).

  13. 13

    Pittendrigh, C. S. Cold Spring Harb. Symp. quant. Biol. 25, 159–184 (1960).

  14. 14

    Reddy, P. et al. Cell 38, 701–710 (1984).

Download references

Author information


  1. The Rockefeller University, 1230 York Avenue, New York, New York, 10021, USA

    • Thaddeus A. Bargiello
    • , F. Rob Jackson
    •  & Michael W. Young


  1. Search for Thaddeus A. Bargiello in:

  2. Search for F. Rob Jackson in:

  3. Search for Michael W. Young in:

About this article

Publication history



Issue Date



Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.