Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A sequence downstream of AAUAAA is required for rabbit β-globin mRNA 3′-end formation

Abstract

The sequence AAUAAA, found 11–30 base pairs (bp) upstream of the poly(A) site of most non-histone eukaryotic messenger RNAs (mRNAs)1 forms an essential part of the recognition site for 3′-end processing of the primary transcript2–4. However, the sequence AATAAA is found in transcribed regions of genes5–8 and is differentially utilized in genes containing multiple copies of the sequence within the 3′-noncoding region8–18, suggesting that the hexanucleotide alone does not comprise a complete recognition site. Therefore, it seems likely that additional sequences are required to form a complete recognition site for 3′-end formation. We have investigated the sequence requirements for mRNA 3′-end formation using the rabbit β-globin gene as a model system. Here we demonstrate that an additional sequence 3′ to AAUAAA is required for the correct 3′-end formation of rabbit β-globin mRNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Proudfoot, N. J. & Brownlee, G. G. Nature 263, 211–214 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Fitzgerald, M. & Shenk, T. Cell 24, 251–260 (1981).

    Article  CAS  PubMed  Google Scholar 

  3. Montell, C., Fisher, E. F., Caruthers, M. H. & Berk, A. J. Nature 305, 600–605 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Higgs, D. R. et al. Nature 306, 398–400 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Fiers, W. et al. Nature 273, 113–120 (1980).

    Article  ADS  Google Scholar 

  6. Reddy, V. B., Ghosh, P. K., Lebowitz, P., Piatek, M. & Weissman, S. J. Virol. 30, 279–296 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Perricaudet, M., le Moullec, J.-M., Tiollais, P. & Petterson, U. Nature 288, 174–176 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Aho, S., Tate, U. & Boedtker, H. Nucleic Acids Res. 11, 5443–5450 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alt, F. W. et al. Cell 20, 293–301 (1980).

    Article  CAS  PubMed  Google Scholar 

  10. Tosi, M., Young, R. A., Hagenbuchle, O. & Schibler, U. Nucleic Acids Res. 9, 2313–2323 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Setzer, D. R., McGrogan, M., Nunberg, J. H. & Schimke, R. T. Cell 22, 361–370 (1980).

    Article  CAS  PubMed  Google Scholar 

  12. Sharp, P. A., Manley, J., Fire, A. & Gefter, M. Ann. N. Y. Acad. Sci. 354, 1–15 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Early, P. et al. Cell 20, 313–319 (1980).

    Article  CAS  PubMed  Google Scholar 

  14. Rosenfeld, M. G. et al. Nature 304, 128–135 (1983).

    Article  ADS  Google Scholar 

  15. Nevins, J. R. & Chen-Kiang, S. Adv. Virus Res. 26, 1–35 (1981).

    Article  CAS  PubMed  Google Scholar 

  16. Parnes, J. R., Robinson, R. R. & Seidman, J. G. Nature 302, 449–452 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Henikoff, S., Sloan, J. S. & Kelly, J. D. Cell 34, 405–414 (1983).

    Article  CAS  PubMed  Google Scholar 

  18. Capetanaki, Y. G., Ngai, J., Flytzanis, C. N. & Lazarides, E. Cell 35, 411–420 (1983).

    Article  CAS  PubMed  Google Scholar 

  19. Grosveld, G. C., de Boer, E., Shewmaker, C. K. & Flavell, R. A. Nature 295, 120–126 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Chu, G. & Sharp, P. A. Gene 13, 197–202 (1981).

    Article  CAS  PubMed  Google Scholar 

  21. Berk, A. J. & Sharp, P. A. Cell 12, 721–732 (1977).

    Article  CAS  PubMed  Google Scholar 

  22. Weaver, R. F. & Weissman, C. Nucleic Acids Res. 6, 1175–1193 (1979).

    Article  Google Scholar 

  23. Aviv, H. & Leder, P. Proc. natn. Acad. Sci. U.S.A. 69, 1408–1412 (1972).

    Article  ADS  CAS  Google Scholar 

  24. Taya, Y. et al. EMBO J. 1, 935–958 (1982).

    Article  Google Scholar 

  25. Berget, S. M. Nature 309, 179–181 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. McDevitt, M. A., Imperiale, M. J., Ali, H. & Nevins, J. R. Cell 37, 993–999 (1984).

    Article  CAS  PubMed  Google Scholar 

  27. Maniatis, T., Fritsch, E. F. & Sambrook, J. in Molecular Cloning (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  28. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gil, A., Proudfoot, N. A sequence downstream of AAUAAA is required for rabbit β-globin mRNA 3′-end formation. Nature 312, 473–474 (1984). https://doi.org/10.1038/312473a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/312473a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing